Answer:
x=2.7
Step-by-step explanation:
27 divided by 5 = 5.4 and 5.4 divided by 2 = 2.7
The correct option is (B) yes because all the elements of set R are in set A.
<h3>
What is an element?</h3>
- In mathematics, an element (or member) of a set is any of the distinct things that belong to that set.
Given sets:
- U = {x | x is a real number}
- A = {x | x is an odd integer}
- R = {x | x = 3, 7, 11, 27}
So,
- A = 1, 3, 5, 7, 9, 11... are the elements of set A.
- R ⊂ A can be understood as R being a subset of A, i.e. all of R's elements can be found in A.
- Because all of the elements of R are odd integers and can be found in A, R ⊂ A is TRUE.
Therefore, the correct option is (B) yes because all the elements of set R are in set A.
Know more about sets here:
brainly.com/question/2166579
#SPJ4
The complete question is given below:
Consider the sets below. U = {x | x is a real number} A = {x | x is an odd integer} R = {x | x = 3, 7, 11, 27} Is R ⊂ A?
(A) yes, because all the elements of set A are in set R
(B) yes, because all the elements of set R are in set A
(C) no because each element in set A is not represented in set R
(D) no, because each element in set R is not represented in set A
1200 is the domain the answer is times the domain
Inflection point is the point where the second derivative of a graph is zero.
y = (x+1)arctan xy' = (x+1)(arctan x)' + (1)arctan xy' = (x+1)/(x^2+1) + arctan xy'' = (x+1)(1/(1+x^2))' + 1/(1+x^2) + 1/(1+x^2)y'' = (x+1)(-1/(1+x^2)^2)(2x)+2/(1+x^2)y'' = ((x+1)(-2x)+1+x^2)/(1+x^2)^2y'' = (-2x^2-2x+2+2x^2)/(1+x^2)^2y'' = (-2x+2)/(1+x^2)^2
Solving for point of inflection: y'' = 00 = (-2x+2)/(1+x^2)^20 = -2x+2x = 1y(1) = (1+1)arctan(1) = 2 * pi/4 = pi/2
Therefore, E(1, pi/2).
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
tis noteworthy that the segment contains endpoints of A and C and the point B is in between A and C cutting the segment in a 1:2 ratio,
![\bf \textit{internal division of a line segment using ratios} \\\\\\ A(-9,-7)\qquad C(x,y)\qquad \qquad \stackrel{\textit{ratio from A to C}}{1:2} \\\\\\ \cfrac{A\underline{B}}{\underline{B} C} = \cfrac{1}{2}\implies \cfrac{A}{C}=\cfrac{1}{2}\implies 2A=1C\implies 2(-9,-7)=1(x,y)\\\\[-0.35em] ~\dotfill\\\\ B=\left(\frac{\textit{sum of "x" values}}{\textit{sum of ratios}}\quad ,\quad \frac{\textit{sum of "y" values}}{\textit{sum of ratios}}\right)\\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Binternal%20division%20of%20a%20line%20segment%20using%20ratios%7D%20%5C%5C%5C%5C%5C%5C%20A%28-9%2C-7%29%5Cqquad%20C%28x%2Cy%29%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Bratio%20from%20A%20to%20C%7D%7D%7B1%3A2%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7BA%5Cunderline%7BB%7D%7D%7B%5Cunderline%7BB%7D%20C%7D%20%3D%20%5Ccfrac%7B1%7D%7B2%7D%5Cimplies%20%5Ccfrac%7BA%7D%7BC%7D%3D%5Ccfrac%7B1%7D%7B2%7D%5Cimplies%202A%3D1C%5Cimplies%202%28-9%2C-7%29%3D1%28x%2Cy%29%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20B%3D%5Cleft%28%5Cfrac%7B%5Ctextit%7Bsum%20of%20%22x%22%20values%7D%7D%7B%5Ctextit%7Bsum%20of%20ratios%7D%7D%5Cquad%20%2C%5Cquad%20%5Cfrac%7B%5Ctextit%7Bsum%20of%20%22y%22%20values%7D%7D%7B%5Ctextit%7Bsum%20of%20ratios%7D%7D%5Cright%29%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf B=\left(\cfrac{(2\cdot -9)+(1\cdot x)}{1+2}\quad ,\quad \cfrac{(2\cdot -7)+(1\cdot y)}{1+2}\right)~~=~~(-4,-6) \\\\[-0.35em] ~\dotfill\\\\ \cfrac{(2\cdot -9)+(1\cdot x)}{1+2}=-4\implies \cfrac{-18+x}{3}=-4 \\\\\\ -18+x=-12\implies \boxed{x=6} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{(2\cdot -7)+(1\cdot y)}{1+2}=-6\implies \cfrac{-14+y}{3}=-6 \\\\\\ -14+y=-18\implies \boxed{y=-4}](https://tex.z-dn.net/?f=%5Cbf%20B%3D%5Cleft%28%5Ccfrac%7B%282%5Ccdot%20-9%29%2B%281%5Ccdot%20x%29%7D%7B1%2B2%7D%5Cquad%20%2C%5Cquad%20%5Ccfrac%7B%282%5Ccdot%20-7%29%2B%281%5Ccdot%20y%29%7D%7B1%2B2%7D%5Cright%29~~%3D~~%28-4%2C-6%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B%282%5Ccdot%20-9%29%2B%281%5Ccdot%20x%29%7D%7B1%2B2%7D%3D-4%5Cimplies%20%5Ccfrac%7B-18%2Bx%7D%7B3%7D%3D-4%20%5C%5C%5C%5C%5C%5C%20-18%2Bx%3D-12%5Cimplies%20%5Cboxed%7Bx%3D6%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B%282%5Ccdot%20-7%29%2B%281%5Ccdot%20y%29%7D%7B1%2B2%7D%3D-6%5Cimplies%20%5Ccfrac%7B-14%2By%7D%7B3%7D%3D-6%20%5C%5C%5C%5C%5C%5C%20-14%2By%3D-18%5Cimplies%20%5Cboxed%7By%3D-4%7D)