Answer:
Either x = 2 or y = 6, depending on the original line
Step-by-step explanation:
So, if the original line is horizontal, our new line is vertical, and all vertical lines in a graph is x = some number. To pass through the point (2, 6), x has to equal 2, since the point's x-coordinate is 2.
On the other hand, if the original line is vertical, our new line is horizontal, which is y = some number. Our point's y-coordinate is 6, so our line should be that y = 6.
The standard form equation for a straight line is y=mx+b where m is the slope and b is the y intercept. Substitute your given information:
y= -3/7x+2 is the equation
12
First figure out of it is a arithmetic or geometric sequence, in this case it is a geometric sequence because you have to multiply, not add to find the next number.
Divide one number, I'll pick 324 by the number before it, 108, you get three.
Now divide 36 by 3, you get 12.
To check, multiply 12 by 3, you get 36, multiply that by 3, you get 108, and so on and so forth.
Answer:
63
Step-by-step explanation:
bearing in mind that the hypotenuse is never negative, since it's just a distance unit, so if an angle has a sine ratio of -(5/13) the negative must be the numerator, namely -5/13.
![\bf cos\left[ sin^{-1}\left( -\cfrac{5}{13} \right) \right] \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{then we can say that}~\hfill }{sin^{-1}\left( -\cfrac{5}{13} \right)\implies \theta }\qquad \qquad \stackrel{\textit{therefore then}~\hfill }{sin(\theta )=\cfrac{\stackrel{opposite}{-5}}{\stackrel{hypotenuse}{13}}}\impliedby \textit{let's find the \underline{adjacent}}](https://tex.z-dn.net/?f=%5Cbf%20cos%5Cleft%5B%20sin%5E%7B-1%7D%5Cleft%28%20-%5Ccfrac%7B5%7D%7B13%7D%20%5Cright%29%20%5Cright%5D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bthen%20we%20can%20say%20that%7D~%5Chfill%20%7D%7Bsin%5E%7B-1%7D%5Cleft%28%20-%5Ccfrac%7B5%7D%7B13%7D%20%5Cright%29%5Cimplies%20%5Ctheta%20%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Btherefore%20then%7D~%5Chfill%20%7D%7Bsin%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B-5%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B13%7D%7D%7D%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Badjacent%7D%7D)
![\bf \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-b^2}=a \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{13^2-(-5)^2}=a\implies \pm\sqrt{144}=a\implies \pm 12=a \\\\[-0.35em] ~\dotfill\\\\ cos\left[ sin^{-1}\left( -\cfrac{5}{13} \right) \right]\implies cos(\theta )=\cfrac{\stackrel{adjacent}{\pm 12}}{13}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20%5Cpm%5Csqrt%7Bc%5E2-b%5E2%7D%3Da%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20%5Cpm%5Csqrt%7B13%5E2-%28-5%29%5E2%7D%3Da%5Cimplies%20%5Cpm%5Csqrt%7B144%7D%3Da%5Cimplies%20%5Cpm%2012%3Da%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20cos%5Cleft%5B%20sin%5E%7B-1%7D%5Cleft%28%20-%5Ccfrac%7B5%7D%7B13%7D%20%5Cright%29%20%5Cright%5D%5Cimplies%20cos%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B%5Cpm%2012%7D%7D%7B13%7D)
le's bear in mind that the sine is negative on both the III and IV Quadrants, so both angles are feasible for this sine and therefore, for the III Quadrant we'd have a negative cosine, and for the IV Quadrant we'd have a positive cosine.