With annual compounding, the number of years for 1000 to become 1400 is 6.7 years
With continous compounding, the number of years for 1000 to become 1400 is 1.35 years
<h3>How long would it take $1000 to become $1,400?</h3>
With annual compounding, the formula that would be used is:
(In FV / PV) / r
Where:
- FV = future value
- PV = present value
- r = interest rate
(In 1400 / 1000) / 0.05 = 6.7 years
With continous compounding, the formula that would be used is:
(In 1400 / 1000) / (In e^r)
Where r = interest rate
((In 1400 / 1000) / (In e^0.05) = 1.35 years
To learn more about how to determine the number of years, please check: : brainly.com/question/21841217
#SPJ1
Answer:
use distance formula for the sides of the triangle
Answer:
(3x+2y)(x+3y)
Step-by-step explanation:
First:
(3x²+ 2xy) + (9xy + 6y²)
then:
x(3x+2y) + 3y (3x+2y)
s0:
(3x+2y)(x+3y)
Answer:
F(x) and h(x)
Step-by-step explanation:
f(x) has a high of three and so does H(x), g(x) has a high of -2 so it doesn't count
Answer:
9. a = -7
10. x = 1
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Step-by-step explanation:
<u>Step 1: Define equation</u>
a + 6a - 14 = 3a + 6a
<u>Step 2: Solve for </u><em><u>a</u></em>
- Combine like terms: 7a - 14 = 9a
- Subtract 7a on both sides: -14 = 2a
- Divide 2 on both sides: -7 = a
- Rewrite: a = -7
<u>Step 3: Check</u>
<em>Plug in a into the original equation to verify it's a solution.</em>
- Substitute in <em>a</em>: -7 + 6(-7) - 14 = 3(-7) + 6(-7)
- Multiply: -7 - 42 - 14 = -21 - 42
- Subtract: -49 - 14 = -63
- Subtract: -63 = -63
Here we see that -63 is equal to -63.
∴ a = -7 is a solution of the equation.
<u>Step 4: Define equation</u>
-12 - 4x = 8x + 4(1 - 7x)
<u>Step 5: Solve for </u><em><u>x</u></em>
- Distribute 4: -12 - 4x = 8x + 4 - 28x
- Combine like terms: -12 - 4x = -20x + 4
- Add 20x on both sides: -12 + 16x = 4
- Add 12 on both sides: 16x = 16
- Divide 16 on both sides: x = 1
<u>Step 6: Check</u>
<em>Plug in x into the original equation to verify it's a solution.</em>
- Substitute in <em>x</em>: -12 - 4(1) = 8(1) + 4(1 - 7(1))
- Multiply: -12 - 4 = 8 + 4(1 - 7)
- Subtract: -16 = 8 + 4(-6)
- Multiply: -16 = 8 - 24
- Subtract: -16 = -16
Here we see that -16 does indeed equal -16.
∴ x = 1 is a solution of the equation.