Answer: B) -48
Step-by-step explanation:
If the system of two linear equations
has infinitely many solutions , then

For the given system of linear equations : 
We , will have

The value of 
Hence, the value of rs is -48.
Thus , the correct option is B) -48.
Answer:
- Solution of equation ( x ) = <u>7</u>
Step-by-step explanation:
In this question we have given with an equation that is <u>4</u><u> </u><u>(</u><u> </u><u>5</u><u>x</u><u> </u><u>-</u><u> </u><u>2</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>2</u><u> </u><u>(</u><u> </u><u>9</u><u>x</u><u> </u><u>+</u><u> </u><u>3 </u><u>)</u><u>.</u> And we are asked to solve this equation that means we have to find the value of <u>x</u><u>.</u><u> </u>
<u>Solution</u><u> </u><u>:</u><u> </u><u>-</u>
<u>
</u>
<u>Step </u><u>1</u><u> </u><u>:</u> Removing parenthesis :

<u>Step </u><u>2</u><u> </u><u>:</u> Adding 8 from both sides :

On further calculations we get :

<u>Step </u><u>3 </u><u>:</u> Subtracting 18 from both sides :

On further calculations we get :

<u>Step </u><u>4</u><u> </u><u>:</u> Dividing with 2 on both sides :

On further calculations we get :

- <u>Therefore</u><u>,</u><u> </u><u>solution</u><u> </u><u>of </u><u>this </u><u>equation</u><u> </u><u>is </u><u>7</u><u> </u><u>or </u><u>we </u><u>can </u><u>say </u><u>that </u><u>value </u><u>of </u><u>this </u><u>equation</u><u> </u><u>is </u><u>7</u><u> </u><u>.</u>
<u>Verifying</u><u> </u><u>:</u><u> </u><u>-</u>
We are verifying our answer by substituting value of x in given equation. So ,
- 4 ( 5x - 2 ) = 2 ( 9x + 3 )
- 4 [ 5 ( 7 ) - 2 ] = 2 [ 9 ( 7 ) + 3 ]
- 4 ( 35 - 2 ) = 2 ( 63 + 3 )
<u>Therefore</u><u>,</u><u> </u><u>our </u><u>value</u><u> for</u><u> x</u><u> is</u><u> </u><u>correct </u><u>.</u>
<h2>
<u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>
The simplest ratio is 1/3. Equivalent ratios would be 3/9 and 5/15.
Answer:
( -
,
)
Step-by-step explanation:
Given the 2 equations
9x + 8y = 3 → (1)
6x - 12y = - 11 → (2)
To eliminate the y- term multiply (1) by 1.5
13.5x + 12y = 4.5 → (3)
Add (2) and (3) term by term
(6x + 13.5x) + (- 12y + 12y) = (- 11 + 4.5)
19.5x = - 6.5 ( divide both sides by 19.5 )
x =
= - 
Substitute this value into either of the 2 equations and solve for y
Using (1), then
- 3 + 8y = 3 ( add 3 to both sides )
8y = 6 ( divide both sides by 8 )
y =
= 
Solution is (-
,
)