Answer: option B is correct.
Step-by-step explanation:
The equation of a straight line can be represented in the slope-intercept form, y = mx + c
Where c = intercept
Slope, m =change in value of y on the vertical axis / change in value of x on the horizontal axis represent
change in the value of y = y2 - y1
Change in value of x = x2 -x1
y2 = final value of y
y 1 = initial value of y
x2 = final value of x
x1 = initial value of x
The line passes through (- 5, - 2) and (3, - 1),
y2 = - 1
y1 = - 2
x2 = 3
x1 = - 5
Slope,m = (- 1 - - 2)/(3 - - 5) = 1/8
To determine the intercept, we would substitute x = 3, y = - 1 and
m = 1/8 into y = mx + c. It becomes
- 1 = 1/8 × 3 + c
- 1 = 3/8 + c
c = - 1 - 3/8 = - 11/8
The equation becomes
y = x/8 - 11/8
so, this is a quadratic equation, meaning two solutions, and we have a factored form of it, meaning you can get the solutions by simply zeroing out the f(x).
![\bf \stackrel{f(x)}{0}=-(x-3)(x+11)\implies 0=(x-3)(x+11)\implies x= \begin{cases} 3\\ -11 \end{cases} \\\\\\ \boxed{-11}\stackrel{\textit{\large 7 units}}{\rule[0.35em]{10em}{0.25pt}}-4\stackrel{\textit{\large 7 units}}{\rule[0.35em]{10em}{0.25pt}}\boxed{3}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bf%28x%29%7D%7B0%7D%3D-%28x-3%29%28x%2B11%29%5Cimplies%200%3D%28x-3%29%28x%2B11%29%5Cimplies%20x%3D%20%5Cbegin%7Bcases%7D%203%5C%5C%20-11%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20%5Cboxed%7B-11%7D%5Cstackrel%7B%5Ctextit%7B%5Clarge%207%20units%7D%7D%7B%5Crule%5B0.35em%5D%7B10em%7D%7B0.25pt%7D%7D-4%5Cstackrel%7B%5Ctextit%7B%5Clarge%207%20units%7D%7D%7B%5Crule%5B0.35em%5D%7B10em%7D%7B0.25pt%7D%7D%5Cboxed%7B3%7D)
so the zeros/solutions are at x = 3 and x = -11, now, bearing in mind the vertex will be half-way between those two, checking the number line, that midpoint will be at x = -4, so the vertex is right there, well, what's f(x) when x = -4?
![\bf f(-4)=-(-4-3)(-4+11)\implies f(-4)=7(7)\implies f(-4)=49 \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{vertex}{(-4~~,~~49)}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20f%28-4%29%3D-%28-4-3%29%28-4%2B11%29%5Cimplies%20f%28-4%29%3D7%287%29%5Cimplies%20f%28-4%29%3D49%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cstackrel%7Bvertex%7D%7B%28-4~~%2C~~49%29%7D~%5Chfill)
Answer:

Step-by-step explanation:
we know that
1 kg=1,000 g
so
using proportion
Find out how many kilograms are 69 grams
Let
x -----> the weight in kg

It is 10% higher than the theoretical probability.Thats the answer because the theoretical odds are 50-50% (75 heads and 75 tails). 10% of 75 is 15, so 75+15=90, which means that it got a 10% higher than the theoretical probability.