Answer:
Step-by-step explanation:
322+63
?=
0
385≠0
False
Answer:
0.6710
Step-by-step explanation:
The diameters of ball bearings are distributed normally. The mean diameter is 107 millimeters and the population standard deviation is 5 millimeters.
Find the probability that the diameter of a selected bearing is between 104 and 115 millimeters. Round your answer to four decimal places.
We solve using z score formula
z = (x-μ)/σ, where
x is the raw score
μ is the population mean = 107 mm
σ is the population standard deviation = 5 mm
For x = 104 mm
z = 104 - 107/5
z = -0.6
Probability value from Z-Table:
P(x = 104) = 0.27425
For x = 115 mm
z = 115 - 107/5
z = 1.6
Probability value from Z-Table:
P(x = 115) = 0.9452
The probability that the diameter of a selected bearing is between 104 and 115 millimeters is calculated as:
P(x = 115) - P(x = 104)
0.9452 - 0.27425
= 0.67095
Approximately = 0.6710
<span> Slope = 1.000/2.000 = 0.500 x-intercept = 5/-1 = -5.00000<span> y-intercept = 5/2 = 2.50000</span></span>
Step-by-step explanation:
-3x+2=11
-3x=11-2
-3x=9
x=9÷(-3)