This problem involves the use of a kinematic equation since it involves the motion of an object. The equation for the height of the object is given as:
s = -<span>16*t^2+v_o*t
Also, the initial velocity, v_o, was also said to be equal to 128 ft/s.
For the first question, </span><span>the time(s) that the projectile will reach a height of 240 ft when v_o is 128 feet per second, can be solved using the given equation and the quadratic formula. The resulting quadratic equation is then </span>-16*t^2 + 128*t -240 =0, where a =16, b =128, and c =-240. The quadratic formula is equal to [-b <span>± sqrt(b^2 -4ac)]/2a. This gives two answers t = 3 seconds and t = 5 seconds. This might be because the projectile has a parabolic path, thus, it reaches the height of 240 ft, before and after it reaches a peak.
For the second question, the time it takes for the projectile to reach the ground is obtained by setting the distance, s, equal to zero. In this case, t = 8 seconds.</span>
1. D. The triangles have two given sides with an included angle, so the postulate would be SAS.
2. A. The triangles have three given sides, so the postulate would be SSS.
Answer:
B
Step-by-step explanation:
If you graph y^2/361 + x^2/169=1 you will get the same graph depicted in the equation.
Answer:
13421+402
Step-by-step explanation: