Answer:
x = -5/2 + i√19 and x = -5/2 - i√19
Step-by-step explanation:
Next time, please share the possible answer choices.
Here we can actually find the roots, using the quadratic formula or some other approach.
a = 1, b = 5 and c = 11. Then the discriminant is b^2-4ac, or 5^2-4(1)(11). Since the discriminant is negative, the roots are complex. The discriminant value is 25-44, or -19.
Thus, the roots of the given poly are:
-5 plus or minus i√19
x = -----------------------------------
2(1)
or x = -5/2 + i√19 and x = -5/2 - i√19
![\bf \textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{}{ h},\stackrel{}{ k})\qquad \qquad radius=\stackrel{}{ r}\\\\ -------------------------------\\\\ (x-3)^2+(y+7)^2=64\implies [x-\stackrel{h}{3}]^2+[y-(\stackrel{k}{-7})]^2=\stackrel{r}{8^2} \\\\\\ center~(3,-7)\qquad radius=8](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bequation%20of%20a%20circle%7D%5C%5C%5C%5C%20%0A%28x-%20h%29%5E2%2B%28y-%20k%29%5E2%3D%20r%5E2%0A%5Cqquad%20%0Acenter~~%28%5Cstackrel%7B%7D%7B%20h%7D%2C%5Cstackrel%7B%7D%7B%20k%7D%29%5Cqquad%20%5Cqquad%20%0Aradius%3D%5Cstackrel%7B%7D%7B%20r%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0A%28x-3%29%5E2%2B%28y%2B7%29%5E2%3D64%5Cimplies%20%5Bx-%5Cstackrel%7Bh%7D%7B3%7D%5D%5E2%2B%5By-%28%5Cstackrel%7Bk%7D%7B-7%7D%29%5D%5E2%3D%5Cstackrel%7Br%7D%7B8%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Acenter~%283%2C-7%29%5Cqquad%20radius%3D8)
so, the broadcast location and range is more or less like the picture below.