The expression into a single logarithm is ![log[(x)^{10}][(2)^{30}]](https://tex.z-dn.net/?f=log%5B%28x%29%5E%7B10%7D%5D%5B%282%29%5E%7B30%7D%5D)
Step-by-step explanation:
Let us revise some logarithmic rules
∵ 10 log(x) + 5 log(64)
- At first re-write 10 log(x)
∴ 10 log(x) = 
- Then re-write 5 log(64)
∴ 5 log(64) = 
∴ 10 log(x) + 5 log(64) =
+ 
- Use the 3rd rule above to make it single logarithm
∵
+
= ![log[(x)^{10}][(64)^{5}]](https://tex.z-dn.net/?f=log%5B%28x%29%5E%7B10%7D%5D%5B%2864%29%5E%7B5%7D%5D)
∴ 10 log(x) + 5 log(64) = ![log[(x)^{10}][(64)^{5}]](https://tex.z-dn.net/?f=log%5B%28x%29%5E%7B10%7D%5D%5B%2864%29%5E%7B5%7D%5D)
∵ 64 = 2 × 2 × 2 × 2 × 2 × 2
∴ We can write 64 as 
∴ 
- Multiply the two powers of 2
∴ 
∴ 10 log(x) + 5 log(64) = ![log[(x)^{10}][(2)^{30}]](https://tex.z-dn.net/?f=log%5B%28x%29%5E%7B10%7D%5D%5B%282%29%5E%7B30%7D%5D)
The expression into a single logarithm is ![log[(x)^{10}][(2)^{30}]](https://tex.z-dn.net/?f=log%5B%28x%29%5E%7B10%7D%5D%5B%282%29%5E%7B30%7D%5D)
Learn more:
You can learn more about the logarithmic functions in brainly.com/question/11921476
#LearnwithBrainly
To be a right triangle, the hypotenuse^2 must equal side1^2 + side2^2
Only set 2 meets these conditions
8, sq root (29), sq root (35) then squaring these:
64, 29, 35
64 = 29 + 35
Answer:
(4,5)
Step-by-step explanation:
Rotating a <em>point </em>by 90 degrees <em>counterclockwise</em> would make the y become x and switch it's negative/positive value, and make x the y.
Ex: (x,y) would become (-y,x)
Answer:
32.66 units
Step-by-step explanation:
We are given that

Point A=(-2,-4) and point B=(1,20)
Differentiate w.r. t x

We know that length of curve

We have a=-2 and b=1
Using the formula
Length of curve=
Using substitution method
Substitute t=12x+14
Differentiate w.r t. x


Length of curve=
We know that

By using the formula
Length of curve=![s=\frac{1}{12}[\frac{t}{2}\sqrt{1+t^2}+\frac{1}{2}ln(t+\sqrt{1+t^2})]^{1}_{-2}](https://tex.z-dn.net/?f=s%3D%5Cfrac%7B1%7D%7B12%7D%5B%5Cfrac%7Bt%7D%7B2%7D%5Csqrt%7B1%2Bt%5E2%7D%2B%5Cfrac%7B1%7D%7B2%7Dln%28t%2B%5Csqrt%7B1%2Bt%5E2%7D%29%5D%5E%7B1%7D_%7B-2%7D)
Length of curve=![s=\frac{1}{12}[\frac{12x+14}{2}\sqrt{1+(12x+14)^2}+\frac{1}{2}ln(12x+14+\sqrt{1+(12x+14)^2})]^{1}_{-2}](https://tex.z-dn.net/?f=s%3D%5Cfrac%7B1%7D%7B12%7D%5B%5Cfrac%7B12x%2B14%7D%7B2%7D%5Csqrt%7B1%2B%2812x%2B14%29%5E2%7D%2B%5Cfrac%7B1%7D%7B2%7Dln%2812x%2B14%2B%5Csqrt%7B1%2B%2812x%2B14%29%5E2%7D%29%5D%5E%7B1%7D_%7B-2%7D)
Length of curve=
Length of curve=
Length of curve=