Answer:
a) one solution
b) no solution
Step-by-step explanation:
Systems of equations can be described as having one solution, no solution or infinite solutions:
One solution: 'x' and 'y' are equal to only one value
No solution: 'x' and 'y' can not be solved with the given equations
Infinite solutions: values for 'x' and 'y' include all real numbers
In order to evaluate the systems, putting them in the same format is your first step:
a) - y = -5x - 6 or y - 5x = 6
y - 5x = -6
Since both equations have the same expression 'y - 5x', but there are equal to opposite values, this system would have no solution, as this would not be possible to calculate.
b) y + 3x = -1
y = 3x -1 or y - 3x = -1
Solving for 'y' by adding the equations and eliminating 'x', gives us:
2y = -2 or y = -1
Using y = -1 to plug back into an equation and solve for 'x': -1 + 3x = -1 or x = 0. Since 'x' and 'y' can be solved for a value, the system has just one solution.
In the table it shows that 1 hour corresponds to $25. Or if you want to check it, simply take any value and divide it by its corresponding hour ( ex. 50/2 or 75/3) Hope this helps!
Answer:
It is A.
Step-by-step explanation:
To solve for b, use the 45-45-90 triangle theorem, in which each of the legs is x, so the legs would be 8. The hypotenuse would therefore be 8√2.
So without further solving the answer is A, since it's the only one with 8√2.
However, I will still solve for A and C. Using the 30-60-90 theorem, we have the sides as x, x√3, and 2x. The second longest side is b. Using this, we find a = 4√6 and c to be 4√2
Answer:
Step-by-step explanation:
So the two lines before and after the expression means absolute value, or modulus of, knowing this, it means that the answer must always yield positive. So if x-6 is positive, it will stay positive, if x-6 is negative, it will turn positive, therefore it can never yield a negative value.
Now im assuming the second question is meant to be absolute value of x-5 is less than 0, because it makes no sense otherwise.
So now knowing that x-5 is always positive, or 0, but this inequality only wants less than 0, this means there are no solutions for the inequality.