Answer:
Kindly check explanation
Explanation:
To obtain the mean absolute deviation(MAD) :
Subtract the forecasted values from the actual values and find its absolute equivalent.
Error (E) = (Actual - forecast)
e1 - - - |e1| - - - - e2 - - - |e2| - APE1 - - APE2
6 - - - - 6 - - - - - 8 - - - - 8 - - 0.772 - - - 1.030
4 - - - - 4 - - - - - 2 - - - - 2 - - 0.507 - - 0.253
4 - - - - 4 - - - - - 2 - - - - 2 - - 0.504 - - 0.252
(-4) - - - 4 - - - - - (-18) - - 18 - 0.513 - - 2.308
(-2) - - - 2 - - - - (-6) - - - 6 - - 0.260 - - 0.781
11 - - - - 11 - - - - 9 - - - - 9 - - 1.412 - - - 1.155
(-1) - - - 1 - - - - - 1 - - - - 1 - - - 0.132 - - 0.132
14 - - - 14 - - - - 10 - - - 10 - - 1.783 - - 1.274
2 - - - - 2 - - - - (-2) - - 2 - - - 0.254 - - 0.254
3 - - - - 3 - - - - - 3 - - - 3 - - 0.379 - - - 0.379
MAD for forecast 1:
(Sum of |e1|) / number of observation
(6 + 4 + 4 + 4 + 2 + 11 + 1 + 14 + 2 + 3) / 10
= 51 / 10
= 5.1
MAD for forecast 2:
(Sum of |e2|) / number of observation
(8 + 2 + 2 + 18 + 6 + 9 + 1 + 10 + 2 + 3) / 10
61 / 10
= 6.1
MAPE = (Sum of absolute percentage error) / number of observations
Forecast 1:
(0.772 + 0.507 + 0.504 + 0.513 + 0.260 + 1.412 + 0.132 + 1.783 + 0.254 + 0.379)% / 10
= 6.516% / 10 = 0.6516%
MAPE Forecast 2:
(1.030 + 0.253 + 0.252 + 2.308 + 0.781 + 1.155 + 0.132 + 1.274 + 0.254 + 0.379)% / 10
= 7.818% / 10
= 0.7818%