Velocity is speed. It doesn't matter what direction.
Answer:
there are three different types of answers to this and all of them have to do with the perspective of pi
1) if you don't want to see the decimals and you want to leave pi alone your answer would be this
3pi
2) if you want to solve for pi it would be
9.43 respectively
3) if you want pi to just be narrowed down to 3 digits 3.14 your answer would be
9.42
Step-by-step explanation:
formula
C=2*pi*R
plug in
2*pi*1.5
Answer: The first day the author reaches 100 days is on day 16.
To solve this problem, you could use a graphing calculator to graph the given equation. Then, determine when this line crosses 100. It crosses when x = 15.539. Therefore, we would have to round up to 16 so it is at least 100.
You could use the quadratic equation to solve: 100 = x^2 -12x + 45
Either you will get 16. If you use the quadratic formula, make sure to only use the positive answer.
The expected length of code for one encoded symbol is

where
is the probability of picking the letter
, and
is the length of code needed to encode
.
is given to us, and we have

so that we expect a contribution of

bits to the code per encoded letter. For a string of length
, we would then expect
.
By definition of variance, we have
![\mathrm{Var}[L]=E\left[(L-E[L])^2\right]=E[L^2]-E[L]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BL%5D%3DE%5Cleft%5B%28L-E%5BL%5D%29%5E2%5Cright%5D%3DE%5BL%5E2%5D-E%5BL%5D%5E2)
For a string consisting of one letter, we have

so that the variance for the length such a string is

"squared" bits per encoded letter. For a string of length
, we would get
.
Answer:
1.921
Step-by-step explanation: