Answer:
The value that represents the 90th percentile of scores is 678.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Find the value that represents the 90th percentile of scores.
This is the value of X when Z has a pvalue of 0.9. So X when Z = 1.28.




The value that represents the 90th percentile of scores is 678.
Answer: La respuesta es 28 y 29. Tengo que explicar?
1. Rational numbers can be written as a ratio (fraction)
Whole numbers are rational. 5 = 5/1, for example.
Square roots are NOT rational. Example: √3
However, square roots of square numbers can be simplified, and are therefore rational. <span>√4 = 2, rational.</span>
√4 + <span>√16 = 2 + 4 = 6. rational
</span>√5 + √36...<span> irrational
</span>√9 + <span>√24... irrational
</span>2 × <span>√4 = 2 × 2 = 4. rational
</span>√49 × <span>√81 = 7 × 9 = 63. rational
</span>3√12... irrational
2.


3.


4.
![n^\frac1x=\sqrt[x]n](https://tex.z-dn.net/?f=n%5E%5Cfrac1x%3D%5Csqrt%5Bx%5Dn)
![\sqrt[3]{m^2n^5}=m^{\frac23}n^{\frac53}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bm%5E2n%5E5%7D%3Dm%5E%7B%5Cfrac23%7Dn%5E%7B%5Cfrac53%7D)
5.


A, since neither 3 nor 12 is a square but we end up with 6.
If it has rational coefients and is a polygon
if a+bi is a root then a-bi is also a root
the roots are -4 and 2+i
so then 2-i must also be a root
if the rots of a poly are r1 and r2 then the factors are
f(x)=(x-r1)(x-r2)
roots are -4 and 2+i and 2-i
f(x)=(x-(-4))(x-(2+i))(x-(2-i))
f(x)=(x+4)(x-2-i)(x-2+i)
expand
f(x)=x³-11x+20