<span>Use the formula: r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ] where k = 0,1,2,3,4
</span><span>First 5th root:
k = 0
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*0)/5 ) + i*sin( (280+360*0)/5 ) ]
2*[ cos( (280+360*0)/5 ) + i*sin( (280+360*0)/5 ) ]
2*[ cos( (280+0)/5 ) + i*sin( (280+0)/5 ) ]
2*[ cos( 280/5 ) + i*sin( 280/5 ) ]
2*[ cos( 56 ) + i*sin( 56 ) ]
-------------------------------------------------------------------
Second 5th root:
k = 1
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*1)/5 ) + i*sin( (280+360*1)/5 ) ]
2*[ cos( (280+360*1)/5 ) + i*sin( (280+360*1)/5 ) ]
2*[ cos( (280+360)/5 ) + i*sin( (280+360)/5 ) ]
2*[ cos( 640/5 ) + i*sin( 640/5 ) ]
2*[ cos( 128 ) + i*sin( 128 ) ]
-------------------------------------------------------------------
Third 5th root:
k = 2
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*2)/5 ) + i*sin( (280+360*2)/5 ) ]
2*[ cos( (280+360*2)/5 ) + i*sin( (280+360*2)/5 ) ]
2*[ cos( (280+720)/5 ) + i*sin( (280+720)/5 ) ]
2*[ cos( 1000/5 ) + i*sin( 1000/5 ) ]
2*[ cos( 200 ) + i*sin( 200 ) ]
-------------------------------------------------------------------
Fourth 5th root:
k = 3
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*3)/5 ) + i*sin( (280+360*3)/5 ) ]
2*[ cos( (280+360*3)/5 ) + i*sin( (280+360*3)/5 ) ]
2*[ cos( (280+1080)/5 ) + i*sin( (280+1080)/5 ) ]
2*[ cos( 1360/5 ) + i*sin( 1360/5 ) ]
2*[ cos( 272 ) + i*sin( 272 ) ]
-------------------------------------------------------------------
Fifth 5th root:
k = 4
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*4)/5 ) + i*sin( (280+360*4)/5 ) ]
2*[ cos( (280+360*4)/5 ) + i*sin( (280+360*4)/5 ) ]
2*[ cos( (280+1440)/5 ) + i*sin( (280+1440)/5 ) ]
2*[ cos( 1720/5 ) + i*sin( 1720/5 ) ]
2*[ cos( 344 ) + i*sin( 344 ) ]</span>
Hola! Aquí mi respuesta;
17-3 x (-2^2)-(-6^2) x (-1^7)
17+3x4+6^2x(-1)
17+12-6^2
17+12-36
-7
someone.
Step-by-step explanation:
help I need the answer to
Answer:
{3, 4}
Step-by-step explanation:
"M(x)=(2x-6)(x-4) true statements when M(x)=0 when x= ?" asks us to find the "roots" of M(x); that is, the x values at which M(x) = 0. Thus, we set
(2x - 6)(x - 4) = 0, which is equivalent to 2(x - 3)(x - 4) = 0.
Thus, x - 3 = and x = 3; also x - 4 = 0, so that x = 4.
The roots of M(x) are {3, 4}
Using the language of the original problem: "true statements when M(x)=0 when x=" the correct results, inserted into the blanks, are x = 3 and x = 4.
Answer:
it's b
Step-by-step explanation:
i got it right on edge