Answer:
Step-by-step explanation:
x=50 hope it hleps
3364
= 2^2 * 29^2
So
√3364 = √(2^2 * 29^2) = 2 * 29 = 58
Answer: it is a
Step-by-step explanation:
Answer:
The candle has a radius of 8 centimeters and 16 centimeters and uses an amount of approximately 1206.372 square centimeters.
Step-by-step explanation:
The volume (
), in cubic centimeters, and surface area (
), in square centimeters, formulas for the candle are described below:
(1)
(2)
Where:
- Radius, in centimeters.
- Height, in centimeters.
By (1) we have an expression of the height in terms of the volume and the radius of the candle:

By substitution in (2) we get the following formula:


Then, we derive the formulas for the First and Second Derivative Tests:
First Derivative Test



![r = \sqrt[3]{\frac{V}{2\pi} }](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%20%7D)
There is just one result, since volume is a positive variable.
Second Derivative Test

If
:

(which means that the critical value leads to a minimum)
If we know that
, then the dimensions for the minimum amount of plastic are:
![r = \sqrt[3]{\frac{V}{2\pi} }](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%20%7D)
![r = \sqrt[3]{\frac{3217\,cm^{3}}{2\pi}}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B3217%5C%2Ccm%5E%7B3%7D%7D%7B2%5Cpi%7D%7D)




And the amount of plastic needed to cover the outside of the candle for packaging is:



The candle has a radius of 8 centimeters and 16 centimeters and uses an amount of approximately 1206.372 square centimeters.
Part A:
The average rate of change refers to a function's slope. Thus, we are going to need to use the slope formula, which is:

and
are points on the function
You can see that we are given the x-values for our interval, but we are not given the y-values, which means that we will need to find them ourselves. Remember that the y-values of functions refers to the outputs of the function, so to find the y-values simply use your given x-value in the function and observe the result:




Now, let's find the slopes for each of the sections of the function:
<u>Section A</u>

<u>Section B</u>

Part B:
In this case, we can find how many times greater the rate of change in Section B is by dividing the slopes together.

It is 25 times greater. This is because
is an exponential growth function, which grows faster and faster as the x-values get higher and higher. This is unlike a linear function which grows or declines at a constant rate.