Answer:
question no 1:slope=5
Step-by-step explanation:
let(x=5andy=8)(a=7andb=18)
now
slope=(b-y)/(a-x)=(18-8)/(7-5)=5
Answer:
Step-by-step explanatioThe chosen topic is not meant for use with this type of problem. Try the examples below.
2
(
x
2
−
1
)
=
16
,
(
0
,
4
)
8
=
2
(
3
x
+
3
)
2
,
(
−
1
,
3
)
x
(
x
+
4
)
=
24
,
(
−
2
,
9
)
n:
Answer:
![\left[\begin{array}{ccc}3&-1&\\-1&1/2\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-1%26%5C%5C-1%261%2F2%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
The matrix system for the linear equations: x + 2y = 8, 2x + 6y = 9
![\left[\begin{array}{ccc}1&2&\\2&6\\\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}8\\9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%26%5C%5C2%266%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%5C%5C9%5Cend%7Barray%7D%5Cright%5D)
To get the coefficient of x and y, the inverse of the first matrix (let the first matrix be A) must be known.
= (1 / determinant of A) x Adjoint of A
the determinant of A = (1 x 6) - (2 x 2) = 6 - 4 = 2
Adjoint of A = ![\left[\begin{array}{ccc}6&-2&\\-2&1\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D6%26-2%26%5C%5C-2%261%5C%5C%5Cend%7Barray%7D%5Cright%5D)
=
= ![\left[\begin{array}{ccc}3&-1&\\-1&1/2\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-1%26%5C%5C-1%261%2F2%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Answer:
The answer to your question is the letter B) y = 3x - 3
Step-by-step explanation:
Data
Point = (2, 3)
slope = m = 3
Process
To solve this problem just substitute the values given in the slope-point equation.
Formula
y - y1 = m(x - x1)
x1 = 2 y1 = 3
-Substitution
y - 3 = 3(x - 2)
-Expand
y - 3 = 3x - 6
-Solve for y
y = 3x - 6 + 3
-Result
y = 3x - 3
<h2><u>ANSWER</u></h2><h3>UX+RX=W</h3><h3>LETS TAKE X COMMON</h3><h3>X(U+R)=W</h3><h3>X=W/(U+R)</h3>
