Hello!
I've attached the diagram.
For this problem, since you have a right triangle, you can use the Pythagorean Theorem to fine the length of the ladder (the hypotenuse of the triangle).
Pythagorean Theorem (where c is the hypotenuse):
a² + b² = c²
The triangle's leg lengths are 8 and 6; substitute into the theorem:
8² + 6² = c²
Simplify:
64 + 36 = c²
100 = c²
10 = c
Answer:
The length of the ladder is 10 m.
Answer:
6 mm and 9 mm are the dimensions of the piece of plastic.
Step-by-step explanation:
Keep in mind the formulas for the area and perimeter of a rectangle:
A = lw
P = 2 (l + w)
List the factors of 54:
1, 2, 3, 6, 9, 18, 27, 54
POSSIBLE DIMENSIONS of the piece of plastic:
1 mm and 54 mm:
Area - 54 mm^2
Perimeter - 110 mm
2 mm and 27 mm
Area - 54 mm^2
Perimeter - 58 mm
3 mm and 18 mm
Area - 54 mm^2
Perimeter - 42 mm
6 mm and 9 mm
Area - 54 mm^2
Perimeter - 30 mm
The rectangular piece of plastic with the dimensions 6mm and 9 mm corresponds with the area and perimeter of the piece of plastic mentioned. So these are the correct dimensions.
Hope this helps!
Step-by-step explanation:
The vertex is the point (-4, 7).
<em>so</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>3</em><em>1</em><em>.</em><em>4</em><em> </em><em>cm</em><em>(</em><em>option</em><em> </em><em>C</em><em>)</em>
<em>please</em><em> </em><em>see</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em> </em><em>for</em><em> </em><em>full</em><em> solution</em><em> </em>
<em>H</em><em>ope</em><em> </em><em>it</em><em> </em><em>helps</em>
<em>G</em><em>ood</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>website</em>