(a).
The product of two binomials is sometimes called FOIL.
It stands for ...
the product of the First terms (3j x 3j)
plus
the product of the Outside terms (3j x 5)
plus
the product of the Inside terms (-5 x 3j)
plus
the product of the Last terms (-5 x 5)
FOIL works for multiplying ANY two binomials (quantities with 2 terms).
Here's another tool that you can use for this particular problem (a).
It'll also be helpful when you get to part-c .
Notice that the terms are the same in both quantities ... 3j and 5 .
The only difference is they're added in the first one, and subtracted
in the other one.
Whenever you have
(the sum of two things) x (the difference of the same things)
the product is going to be
(the first thing)² minus (the second thing)² .
So in (a), that'll be (3j)² - (5)² = 9j² - 25 .
You could find the product with FOIL, or with this easier tool.
______________________________
(b).
This is the square of a binomial ... multiplying it by itself. So it's
another product of 2 binomials, that both happen to be the same:
(4h + 5) x (4h + 5) .
You can do the product with FOIL, or use another little tool:
The square of a binomial (4h + 5)² is ...
the square of the first term (4h)²
plus
the square of the last term (5)²
plus
double the product of the terms 2 · (4h · 5)
________________________________
(c).
Use the tool I gave you in part-a . . . twice .
The product of the first 2 binomials is (g² - 4) .
The product of the last 2 binomials is also (g² - 4) .
Now you can multiply these with FOIL,
or use the squaring tool I gave you in part-b .
Answer:The answer is A
Step-by-step explanation:
Answer:
6(x+2)(x-5)
Step-by-step explanation:
Answer:
ABC
Step-by-step explanation:
Answer:
a) Bar chart
b) Histogram
c) Bar chart
d) Histogram
Step-by-step explanation:
a) Trash pick-up DAY for each HOUSEHOLD in Ames - This is categorical data because, we are talking about days of the week. For instance, Household 1 might have Sunday as Trash pick-up day and that could be accumulated into frequency. Hence, BAR chart is the most appropriate.
b) Patient WAIT-TIME at ISU. This is continuous (quantitative) data. And the most appropriate is HISTOGRAM.
c) Number of trips taken during a GIVEN SCHOOL YEAR by EACH ISU STUDENT. Let say we have 5 ISU STUDENTS. Student 1 had 5 trips, student 2 had 10 trips, etc.
We want to see which student has the most and least trip in that particular school year. Although is count data but the most appropriate graphical display is BAR chart.
d) TAX BRACKET of ALL Iowa RESIDENTS. This is a continuous (quantitative) data. The most appropriate graphical display is HISTOGRAM.