Transpiration is the process by which moisture is carried through plants from roots to small pores on the underside of leaves, where it changes to vapor and is released to the atmosphere. Transpiration is essentially evaporation of water from plant leaves. Transpiration also includes a process called guttation, which is the loss of water in liquid form from the uninjured leaf or stem of the plant, principally through water stomata.
Studies have revealed that about 10 percent of the moisture found in the atmosphere is released by plants through transpiration. The remaining 90 percent is mainly supplied by evaporation from oceans, seas, and other bodies of water (lakes, rivers, streams).
Transpiration and plant leaves
Plants put down roots into the soil to draw water and nutrients up into the stems and leaves. Some of this water is returned to the air by transpiration (when combined with evaporation, the total process is known as evapotranspiration). Transpiration rates vary widely depending on weather conditions, such as temperature, humidity, sunlight availability and intensity, precipitation, soil type and saturation, wind, land slope, and water use and diversion by people. During dry periods, transpiration can contribute to the loss of moisture in the upper soil zone, which can have an effect on vegetation and food-crop fields.
Indirect methods like mark and recapture become a strong tool to estimate population size or density in species on which it is impossible to apply a direct methods. <em>Because of their biological and ecological characteristics, the Gypsy moth and the Green lizard populations are good examples for which mark and recapture would work well.</em>
<em>------------------------------------------------------</em>
There are different methods to study population density. There are direct methods and indirect methods. Among these last ones, we might find the Mark-Recapture technique.
The Mark-Recapture technique assumes that
- <em>the population is closed during the sampling season, there is no mortality nor natality, </em>
- <em>marks in the individual last the whole sampling season, and they do not affect the marked individual or their behavior. </em>
- <em>marked individuals are randomly distributed in the population, and </em>
- <em>all the individuals have the same probability of being sampled.</em>
The method consists of capturing a sample of individuals belonging to the population under study. After capturing the individuals, the researcher marks and releases them again. The third step is to sample again: The researcher captures new individuals and counts how many of them are marked. These marked individuals belong to the first sample.
Indirect methods like this become a strong tool to estimate population size or density in species on which it is impossible to apply a direct method such as <em>counting individuals</em>.
For instance, if we need to estimate insects population density (<u><em>Gypsy moth population</em></u>) or reptiles population density (<u><em>Green lizard population</em></u>) because of their biological and ecological characteristics, the best way of doing it is by applying indirect methods. <em>These species characterize as small-sized, fast to escape, they can hide in small inaccessible places, they have nocturnal habits, their reproductive rate is too high, and their distribution rate is wide. </em>Among many other characteristics, their population density can not be estimated by direct methods. Mark-Recapture technique is the most suitable one.
----------------------------------------------
Related link: brainly.com/question/10646744?referrer=searchResults
The correct answer is angioplasty.
<span>
Angioplasty is one of the treatments after heart attack including special tubing with an attached deflated balloon. The tube is threaded up to the coronary arteries. Angioplasty is usually combined with the placement of a small tube called a stent which helps to restore the flow of blood through the artery and decreases its chance of narrowing again.</span>
~Hello there!
Your question: What name is given to elements with the same number protons but differing numbers of neutrons?
Your answer: Istopes is the name given to the elements with the same number of protons but differing number and neutrons.
Any queries ^?
Happy Studying!
Answer:
a. Ligase
b. Ligase (
it's repeated)
Explanation:
DNA synthesis begins, therefore, by synthesizing a short segment of RNA called a primer, which primer is synthesized by an enzyme called Primasa. Primasa is an RNA polymerase that uses DNA as a template. All fragments of Okazaki begin with a Primer. Subsequently, the DNA polymerase III Holoenzyme performs the synthesis of the corresponding DNA fragment until it reaches the next primer. At that time, DNA polymerase Ia replaces the DNA polymerase Holoenzyme III. The DNA polymerase I is responsible for removing the RNA primer through its 5'P-3'OH exonueotic activity and at the same time fills the hole by synthesizing DNA.
Finally, the two Okazaki fragments have to be joined, it is necessary to link the 3'OH end of a fragment with the 5'P of the next fragment. This work of sealing and joining the successive fragments is done by Ligase.