AE = AC = 4
m<CAB = 60 (equilateral triangle)
m<CAE = 90 (square)
m<BAE = 150 (= 60 + 90)
Triangle BAE is isosceles since AB = AE;
therefore, m<AEB = m<ABE.
m<AEB + m<ABE + m<BAE = 180
m<AEB + m< ABE + 150 = 180
m<AEB + m<AEB = 30
m<AEB = 15
In triangle ABE, we know AE = AB = 4;
we also know m<BAE = 150, and m<AEB = 15.
We can use the law of sines to find BE.
BE/(sin 150) = 4/(sin 15)
BE = (4 sin 150)/(sin 15)
BE = 7.727
The answer to this is credit.<span />
Answer:
4 days a week
Step-by-step explanation:
2+1=3
3+1/2+12=4
Answer:
i cannt see it
Step-by-step explanation:
Answer:
<h2><em><u>x</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>32</u></em></h2>
Step-by-step explanation:
4x - 7 - 3x + 4 =25
=> 4x - 3x = 25 + 7
=> <em><u>x = 32 (Ans)</u></em>