1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Evgen [1.6K]
2 years ago
14

What is so yeah can anyone please help me 6(3×-5)=10

Mathematics
2 answers:
katrin2010 [14]2 years ago
8 0
20/9 is the answer that I got
8090 [49]2 years ago
3 0
First distribute the numbers,
6(3x+5)=10 becomes 18x-30=10
Then add 30 to both sides, 18x-30+30=10+30.
After that simplify it, 18x=40.
Since x should be alone, divide both sides by 18.
x= 20/9 is the answer.
You might be interested in
Please help me idk this
d1i1m1o1n [39]

Answer:

105

Step-by-step explanation:

500 goes into 100, 5 times

21 times 5 is 105

So 21/100 is equal to 105/500

Or you can do

500*0.21=105

4 0
2 years ago
Read 2 more answers
Mr. Chang’s class has 28 students, StartFraction 4 Over 7 EndFraction of whom are girls. Which equation shows how to determine t
Olegator [25]

Answer:

Okay, so we know a number of students and the amount of girls as a bracket. So what we have to do now is multiply them with each other.

28 *4/7 = 16

So there are 16 girls in Mr. Chang´s class.

You can also determine the boys by - the students with the girls:

28-16=12 boys

Have a nice day :D

Step-by-step explanation:

brainliest?

7 0
3 years ago
Read 2 more answers
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
A student randomly guesses on 10 true/false questions. use the binomial model to determine the probability that the student gets
lana [24]

Answer:

P(5)=\frac{63}{256}

Step-by-step explanation:

we are given

A student randomly guesses on 10 true/false questions

so,

n=10

there only true and false

so, probability getting true question is

p=\frac{1}{2}

so, probability getting false question is

q=\frac{1}{2}

the student gets 5 out of 10 questions right

so,

r=5

we can use binomial probability formula

P(r)=\frac{n!}{r!(n-r)!} p^rq^{n-r}

now, we can plug values

P(5)=\frac{10!}{5!(10-5)!} (\frac{1}{2})^5(\frac{1}{2})^{10-5}

we can simplify it

and we get

P(5)=\frac{63}{256}

4 0
2 years ago
Is the following relation a function? (1 point) Graph of x equals y squared, which results in a horizontal parabola centered on
Savatey [412]

The equation is not a function because in order for something to be a function you can't have 2 values of y for every x.

3 0
2 years ago
Read 2 more answers
Other questions:
  • Find the dimensions of a rectangle whose perimeter is 16 meters and whose area is 15 square meters
    6·1 answer
  • Does (3,6) is a solution to the promblem y<3x-2
    15·2 answers
  • I just need an answer please ! ! !
    7·1 answer
  • The probability that a student takes a history class and a sociology class is 0.051. The probability that a student takes a hist
    15·1 answer
  • 2) Using the table above, what is the probability a patient chosen at random will have normal cholesterol level?
    6·1 answer
  • Determine two positive numbers whose product is 360, and the sum of one of the numbers and 10 times the other number is a minimu
    12·1 answer
  • What is the area of a trapezium​
    15·1 answer
  • PLEASE HELP<br><br> 4 1/3 - 2 1/4
    15·1 answer
  • I need help pls help me
    7·2 answers
  • Hi i need you to convert 9/15 into a decimal and show work please!
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!