Let's start by assuming Armando's house is between Joey's and the park.
Let

be the distance Joey walked to Armando's house.
<span>The park is 9/10 mile from Joey's home. Joey leaves home and walks to Armando's home. Then Joey and Armando walk 3/5 mile to the park.
</span>


That's probably the answer they're looking for. But what if the park is between Joey and Armando's houses or Joey is between the park and Armando? (The latter isn't really possible with the given distances.)
Let

be the distances between three collinear points like we have here. Our equation is really a few equations in one, something like

Let's get rid of the plus/minuses. Squaring,



For us, that's a quadratic equation for


I'll skip right to the solutions,


We could have gotten the 3/2 just by adding 9/10+3/5 but this was more fun.
Answer:
C
Step-by-step explanation:
Start by writing all of the pairs of numbers that go into 60
1 60
2 30
3 20
4 15
5 12
6 10
Then, look for the pair that has a difference of seven between the two numbers.
Your numbers are 5 and 12
The easiest way to tell whether lines are parallel, perpendicular, or neither is when they are written in slope-intercept form or y = mx + b. We will begin by putting both of our equations into this format.
The first equation,

is already in slope intercept form. The slope is 1/2 and the y-intercept is -1.
The second equation requires rearranging.

From this equation, we can see that the slope is -1/2 and the y-intercept is -3.
When lines are parallel, they have the same slope. This is not the case with these lines because one has slope of 1/2 and the other has slope of -1/2. Since these are not the same our lines are not parallel.
When lines are perpendicular, the slope of one is the negative reciprocal of the other. That is, if one had slope 2, the other would have slope -1/2. This also is not the case in this problem.
Thus, we conclude that the lines are neither parallel nor perpendicular.