X=1. Chose C. Hoped that will help
It is either 400 or negative 400 because if you devide 12 by .03 it is 400
I'm going to assume the joint density function is

a. In order for
to be a proper probability density function, the integral over its support must be 1.

b. You get the marginal density
by integrating the joint density over all possible values of
:

c. We have

d. We have

and by definition of conditional probability,


e. We can find the expectation of
using the marginal distribution found earlier.
![E[X]=\displaystyle\int_0^1xf_X(x)\,\mathrm dx=\frac67\int_0^1(2x^2+x)\,\mathrm dx=\boxed{\frac57}](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_0%5E1xf_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac67%5Cint_0%5E1%282x%5E2%2Bx%29%5C%2C%5Cmathrm%20dx%3D%5Cboxed%7B%5Cfrac57%7D)
f. This part is cut off, but if you're supposed to find the expectation of
, there are several ways to do so.
- Compute the marginal density of
, then directly compute the expected value.

![\implies E[Y]=\displaystyle\int_0^2yf_Y(y)\,\mathrm dy=\frac87](https://tex.z-dn.net/?f=%5Cimplies%20E%5BY%5D%3D%5Cdisplaystyle%5Cint_0%5E2yf_Y%28y%29%5C%2C%5Cmathrm%20dy%3D%5Cfrac87)
- Compute the conditional density of
given
, then use the law of total expectation.

The law of total expectation says
![E[Y]=E[E[Y\mid X]]](https://tex.z-dn.net/?f=E%5BY%5D%3DE%5BE%5BY%5Cmid%20X%5D%5D)
We have
![E[Y\mid X=x]=\displaystyle\int_0^2yf_{Y\mid X}(y\mid x)\,\mathrm dy=\frac{6x+4}{6x+3}=1+\frac1{6x+3}](https://tex.z-dn.net/?f=E%5BY%5Cmid%20X%3Dx%5D%3D%5Cdisplaystyle%5Cint_0%5E2yf_%7BY%5Cmid%20X%7D%28y%5Cmid%20x%29%5C%2C%5Cmathrm%20dy%3D%5Cfrac%7B6x%2B4%7D%7B6x%2B3%7D%3D1%2B%5Cfrac1%7B6x%2B3%7D)
![\implies E[Y\mid X]=1+\dfrac1{6X+3}](https://tex.z-dn.net/?f=%5Cimplies%20E%5BY%5Cmid%20X%5D%3D1%2B%5Cdfrac1%7B6X%2B3%7D)
This random variable is undefined only when
which is outside the support of
, so we have
![E[Y]=E\left[1+\dfrac1{6X+3}\right]=\displaystyle\int_0^1\left(1+\frac1{6x+3}\right)f_X(x)\,\mathrm dx=\frac87](https://tex.z-dn.net/?f=E%5BY%5D%3DE%5Cleft%5B1%2B%5Cdfrac1%7B6X%2B3%7D%5Cright%5D%3D%5Cdisplaystyle%5Cint_0%5E1%5Cleft%281%2B%5Cfrac1%7B6x%2B3%7D%5Cright%29f_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac87)
Answer:
vertical asymptote at x=-1
horizontal asymptote at y=0
Step-by-step explanation:

To find vertical asymptote we set the denominator =0 and solve for x
x+1=0 (subtract 1 from both sides)
x=-1
So, vertical asymptote at x=-1
To find horizontal asymptote we look at the degree of both numerator and denominator
there is no variable at the numerator , so degree of numerator =0
degree of denominator =1
When the degree of numerator is less than the degree of denominator
then horizontal asymptote at y=0
All 45 45 90 triangles sides are equal to x, x, and xsqrt2. which is the biggest side. So here x(11) and x(11) are both given. the answer to the x shown on the triangle is xsqrt2