Explicit Functiony = f(x) is said to define y explicitly as a function of x because the variable y appears alone on one side of the equation and does not appear at all on the other side. (ex. y = -3x + 5)Implicit FunctionAn equation in which y is not alone on one side. (ex. 3x + y = 5)Implicit DifferentiationGiven a relation of x and y, find dy/dx algebraically.d/dx ln(x)1/xd/dx logb(x) (base b)1/xln(b)d/dx ln(u)1/u × du/dxd/dx logb(u) (base b)1/uln(b) × du/dx(f⁻¹)'(x) = 1/(f'(f⁻¹(x))) iff is a differentiable and one-to-one functiondy/dx = 1/(dx/dy) ify = is a differentiable and one-to-one functiond/dx (b∧x)b∧x × ln(b)d/dx e∧xe∧xd/dx (b∧u)b∧u × ln(b) du/dxd/dx (e∧u)e∧u du/dxDerivatives of inverse trig functionsStrategy for Solving Related Rates Problems<span>1. Assign letters to all quantities that vary with time and any others that seem relevant to the problem. Give a definition for each letter.
2. Identify the rates of change that are known and the rate of change that is to be found. Interpret each rate as a derivative.
3. Find an equation that relates the variables whose rates of change were identified in Step 2. To do this, it will often be helpful to draw an appropriately labeled figure that illustrates the relationship.
4. Differentiate both sides of the equation obtained in Step 3 with respect to time to produce a relationship between the known rates of change and the unknown rate of change.
5. After completing Step 4, substitute all known values for the rates of change and the variables, and then solve for the unknown rate of change.</span>Local Linear Approximation formula<span>f(x) ≈ f(x₀) + f'(x₀)(x - x₀)
f(x₀ + ∆x) ≈ f(x₀) + f'(x₀)∆x when ∆x = x - x₀</span>Local Linear Approximation from the Differential Point of View∆y ≈ f'(x)dx = dyError Propagation Variables<span>x₀ is the exact value of the quantity being measured
y₀ = f(x₀) is the exact value of the quantity being computed
x is the measured value of x₀
y = f(x) is the computed value of y</span>L'Hopital's RuleApplying L'Hopital's Rule<span>1. Check that the limit of f(x)/g(x) is an indeterminate form of type 0/0.
2. Differentiate f and g separately.
3. Find the limit of f'(x)/g'(x). If the limit is finite, +∞, or -∞, then it is equal to the limit of f(x)/g(x).</span>
For starters, you should start by finding somewhere to go off of. For instance, I started with 5 pecks of whortleberries and 4 pecks of huckleberries. This game me $69 of whortleberries and $20 of huckleberries, $89 in total. This tells me I need to go up. By going steadily upwards, I'll eventually settle on 8 whortleberry pecks and 1 huckleberry peck. This is $104 and $5, which, when added together, equals $109.
Answer: 8 Whortleberry Pecks, 1 Huckleberry Peck
Answer:
It has more time and the other takes less time
Step-by-step explanation:
if you subtract them it should be 4.66 seconds of difference hope this helps :)
Answer:
6.4 rounds down to 6.
Step-by-step explanation:
Divide 16 by 5. Multiply that number by 2.
Answer:
16 miles
Step-by-step explanation:
96 divided by 60 is 1.6, the car traveled 1.6 miles in 1 minute. 1.6 times 10 is 16, 16 miles in 10 minutes.