Answer:
f(x)=-18x^2
Step-by-step explanation:
Given:
1+Integral(f(t)/t^6, t=a..x)=6x^-3
Let's get rid of integral by differentiating both sides.
Using fundamental of calculus and power rule(integration):
0+f(x)/x^6=-18x^-4
Additive Identity property applied:
f(x)/x^6=-18x^-4
Multiply both sides by x^6:
f(x)=-18x^-4×x^6
Power rule (exponents) applied"
f(x)=-18x^2
Check:
1+Integral(-18t^2/t^6, t=a..x)=6x^-3
1+Integral(-18t^-4, t=a..x)=6x^-3
1+(-18t^-3/-3, t=a..x)=6x^-3
1+(6t^-3, t=a..x)=6x^-3
That looks great since those powers are the same on both side after integration.
Plug in limits:
1+(6x^-3-6a^-3)=6x^-3
We need 1-6a^-3=0 so that the equation holds true for all x.
Subtract 1 on both sides:
-6a^-3=-1
Divide both sides by-6:
a^-3=1/6
Raise both sides to -1/3 power:
a=(1/6)^(-1/3)
Negative exponent just refers to reciprocal of our base:
a=6^(1/3)
Answer:
10
Step-by-step explanation:
By using intersecting chord theorem:
NH.HT=MH.HY
(x+20)*8=12*20
x+20=12*20/8
x+20=240/8
x+20=30
x=30-20
x=10
Answer:
8cm
Step-by-step explanation:
x is similar to the side 12cm.
We know the second triangle is rotated counter-clockwise from the first because similar triangles have the same angle measurements.
Since the angle in the first triangle between 9cm and 15cm is 53°, it can't be similar to the angle between x and the hypotenuse in the second triangle.
Find the scale factor:
Triangle 1/Triangle 2
Divide two similar sides.
6/9 = 2/3
Multiply the scale factor by the similar side to find x.
x = 12*(2/3)
x = 8