Complete Question
The complete question is shown on the first uploaded image
Answer:
The confidence level interval is ![0.016 \le C \le 0.404](https://tex.z-dn.net/?f=0.016%20%5Cle%20C%20%5Cle%200.404)
Step-by-step explanation:
The sample size is ![n = 20](https://tex.z-dn.net/?f=n%20%3D%20%2020)
The number planning to increase workforce is ![x = 3](https://tex.z-dn.net/?f=x%20%3D%20%203)
The confidence level is
%
The value of proportion for a plus 4 method is
![p = \frac{x+2}{n+4}](https://tex.z-dn.net/?f=p%20%3D%20%5Cfrac%7Bx%2B2%7D%7Bn%2B4%7D)
substituting values
![p = \frac{3+2}{20+4}](https://tex.z-dn.net/?f=p%20%3D%20%5Cfrac%7B3%2B2%7D%7B20%2B4%7D)
![p =0.21](https://tex.z-dn.net/?f=p%20%3D0.21)
The z-critical value at confidence level of 98% is
![z_{c}=z_{0.98} = 2.33](https://tex.z-dn.net/?f=z_%7Bc%7D%3Dz_%7B0.98%7D%20%3D%20%202.33)
This values is obtained from the standard normal table
The confidence level interval can be mathematically represented as
![C =p \ \pm z_{c} * \sqrt{\frac{p(1-p)}{n+4} }](https://tex.z-dn.net/?f=C%20%3Dp%20%5C%20%5Cpm%20z_%7Bc%7D%20%2A%20%5Csqrt%7B%5Cfrac%7Bp%281-p%29%7D%7Bn%2B4%7D%20%7D)
substituting values
![C = 0.21 \pm 2.33 * \sqrt{\frac{0.21(1- 0.21)}{20 +4} }](https://tex.z-dn.net/?f=C%20%3D%200.21%20%5Cpm%202.33%20%2A%20%5Csqrt%7B%5Cfrac%7B0.21%281-%200.21%29%7D%7B20%20%2B4%7D%20%7D)
![C = 0.21 \pm 0.194](https://tex.z-dn.net/?f=C%20%3D%200.21%20%5Cpm%200.194)
=> ![0.016 \le C \le 0.404](https://tex.z-dn.net/?f=0.016%20%5Cle%20C%20%5Cle%200.404)