Hello!!
Circumference of a circle = 2πr
and
Given, 2πr = 44cm
So,
πr = 44/2 = 22
r = 22 × 7/22
r = 7cm is the answer.
Stay safe and God bless!
- eli <3
Using the normal distribution, it is found that 58.97% of students would be expected to score between 400 and 590.
<h3>Normal Probability Distribution</h3>
The z-score of a measure X of a normally distributed variable with mean
and standard deviation
is given by:

- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
The mean and the standard deviation are given, respectively, by:

The proportion of students between 400 and 590 is the <u>p-value of Z when X = 590 subtracted by the p-value of Z when X = 400</u>, hence:
X = 590:


Z = 0.76
Z = 0.76 has a p-value of 0.7764.
X = 400:


Z = -0.89
Z = -0.89 has a p-value of 0.1867.
0.7764 - 0.1867 = 0.5897 = 58.97%.
58.97% of students would be expected to score between 400 and 590.
More can be learned about the normal distribution at brainly.com/question/27643290
#SPJ1
Answer:the slope would be 7/3
Step-by-step explanation:
This is because you write the slope in rise over run form and use the two points provided to get 14/6 and reduce hat number down to 7/3.
Answer: 3,750 miles
Step-by-step explanation:
Route takes him 125 miles each way so in a day he travels:
= 125 + 125
= 250 miles
He made 15 roundtrips so total miles is:
= 15 * 250
= 3,750 miles
Answer:
Please check the explanation
Step-by-step explanation:
Given the function

Given that the output = -3
i.e. y = -3
now substituting the value y=-3 and solve for x to determine the input 'x'


switch sides

Add 1 to both sides


![\mathrm{For\:}g^3\left(x\right)=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt[3]{f\left(a\right)},\:\sqrt[3]{f\left(a\right)}\frac{-1-\sqrt{3}i}{2},\:\sqrt[3]{f\left(a\right)}\frac{-1+\sqrt{3}i}{2}](https://tex.z-dn.net/?f=%5Cmathrm%7BFor%5C%3A%7Dg%5E3%5Cleft%28x%5Cright%29%3Df%5Cleft%28a%5Cright%29%5Cmathrm%7B%5C%3Athe%5C%3Asolutions%5C%3Aare%5C%3A%7Dg%5Cleft%28x%5Cright%29%3D%5Csqrt%5B3%5D%7Bf%5Cleft%28a%5Cright%29%7D%2C%5C%3A%5Csqrt%5B3%5D%7Bf%5Cleft%28a%5Cright%29%7D%5Cfrac%7B-1-%5Csqrt%7B3%7Di%7D%7B2%7D%2C%5C%3A%5Csqrt%5B3%5D%7Bf%5Cleft%28a%5Cright%29%7D%5Cfrac%7B-1%2B%5Csqrt%7B3%7Di%7D%7B2%7D)
Thus, the input values are:
![x=-\sqrt[3]{2}+5,\:x=\frac{\sqrt[3]{2}\left(1+5\cdot \:2^{\frac{2}{3}}\right)}{2}-i\frac{\sqrt[3]{2}\sqrt{3}}{2},\:x=\frac{\sqrt[3]{2}\left(1+5\cdot \:2^{\frac{2}{3}}\right)}{2}+i\frac{\sqrt[3]{2}\sqrt{3}}{2}](https://tex.z-dn.net/?f=x%3D-%5Csqrt%5B3%5D%7B2%7D%2B5%2C%5C%3Ax%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Cleft%281%2B5%5Ccdot%20%5C%3A2%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5Cright%29%7D%7B2%7D-i%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Csqrt%7B3%7D%7D%7B2%7D%2C%5C%3Ax%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Cleft%281%2B5%5Ccdot%20%5C%3A2%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5Cright%29%7D%7B2%7D%2Bi%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Csqrt%7B3%7D%7D%7B2%7D)
And the real input is:
![x=-\sqrt[3]{2}+5](https://tex.z-dn.net/?f=x%3D-%5Csqrt%5B3%5D%7B2%7D%2B5)