first off let's notice that the height is 11 meters and the volume of the cone is 103.62 cubic centimeters, so let's first convert the height to the corresponding unit for the volume, well 1 meters is 100 cm, so 11 m is 1100 cm.
![\textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ V=\stackrel{cm^3}{103.62}\\ h=\stackrel{cm}{1100} \end{cases}\implies 103.62=\cfrac{\pi r^2 (1100)}{3} \\\\\\ 3(103.62)=1100\pi r^2\implies \cfrac{3(103.62)}{1100\pi }=r^2 \\\\\\ \sqrt{\cfrac{3(103.62)}{1100\pi }}=r\implies \stackrel{cm}{0.00510199305952} \approx r](https://tex.z-dn.net/?f=%5Ctextit%7Bvolume%20of%20a%20cone%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20V%3D%5Cstackrel%7Bcm%5E3%7D%7B103.62%7D%5C%5C%20h%3D%5Cstackrel%7Bcm%7D%7B1100%7D%20%5Cend%7Bcases%7D%5Cimplies%20103.62%3D%5Ccfrac%7B%5Cpi%20r%5E2%20%281100%29%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%203%28103.62%29%3D1100%5Cpi%20r%5E2%5Cimplies%20%5Ccfrac%7B3%28103.62%29%7D%7B1100%5Cpi%20%7D%3Dr%5E2%20%5C%5C%5C%5C%5C%5C%20%5Csqrt%7B%5Ccfrac%7B3%28103.62%29%7D%7B1100%5Cpi%20%7D%7D%3Dr%5Cimplies%20%5Cstackrel%7Bcm%7D%7B0.00510199305952%7D%20%5Capprox%20r)
Calculate the circumference of the full circle:
circumference = PI x diameter = 3.14 x 20 = 62.8 inches
the arc length is 160 degrees of the full circle
divide 160 by 360 (full circle) and multiply by the circumference:
160/360 x 62.8 = 27.9 inches
Step-by-step explanation:
=( 5 + 1 )2 - ( 12 + 32 ) + 3
=6 * 2 - 44 + 3
=12 - 44 + 3
= -29
Answer:
3y=39 :3
y=13
Step-by-step explanation:
prove me wrong