Answer:
A. The bacteria could no longer regenerate the NAD+ needed for glycolysis, so it would stop producing ATP.
Explanation:
According to the given information in this question, Lactobacillus acidophilus is a bacterium species that uses the lactic acid fermentation when there is no oxygen in its cell i.e. under anaerobic conditions. This means that it converts glucose to lactic acid during this anaerobic respiration process.
However, if the lactic acid fermentation pathway were blocked under an anaerobic condition, this means that it will be no longer be able to perform respiration and hence stop production of ATP. This is because the bacteria will no longer regenerate the NAD+ (electron acceptor) needed for glycolysis, so it would stop producing ATP. Note that, all living organisms, whether aerobic or anaerobic, undergo GLYCOLYSIS, which is the first stage of cellular respiration.
Answer:
The correct answers are A and D
Explanation:
Moraines are made of till. They form when a glacier stays in one place for a long time and deposits a pile of till, then it retreats and leaves a moraine.
A moraine is a landform feature which is formed by the glacier retreating. The ridge of sediments that geologists found has a feature namely moraine.
<h3>What is moraine?</h3>
The materials usually soil or rocks left behind by the glaciers are called moraine.
Just like rivers that carries all sorts of debris and silt and eventually builds up to form deltas, similarly glaciers moves all sorts of dirt and boulders that assembles to form moraines.
As the geologist found a ridge of sediments and notices a glacier in the distance so this is the moraine.
Thus, the correct answer is C.
For more details regarding moraine, visit:
brainly.com/question/3791076
#SPJ1
Answer:
Thymine in DNA occurs as the result of thymidylate synthase creating deoxythymidine monophosphate (dTMP), which then undergoes phosphorylation to deoxythymidine diphosphate (dTDP), then to Deoxythymidine triphosphate (dTTP), and incorporated into DNA by the DNA polymerase (DNA pol). Thymine in tRNA arises post-transcriptionally, by S-adenosylmethionine-dependent methylation of a uridine 5'-monophosphate (UMP) residue in RNA.
Explanation:
Thymidylate synthase is an enzyme involved in <em>de novo</em> DNA synthesis. This enzyme (thymidylate synthase) catalyzes the transfer of the one-carbon group from 5,10-methylene-tetrahydrofolate (5,10-CH2-THF) to deoxyuridine monophosphate (dUMP) and subsequent methylation to produce deoxythymidine monophosphate (dTMP), which is then phosphorylated to deoxythymidine triphosphate (dTTP) by kinases and incorporated into DNA. On the other hand, specific tRNA methylases catalyze the methylation of transference RNA (tRNA) by using S-adenosylmethionine as a methyl donor. Since tRNA methylation is a post-transcriptional modification, this chemical reaction is considered an epitranscriptomic modification on the RNA molecule.