Answer:
1 is correct for d
2 is the is no solution
not sure if I'm right been awhile since i did math so sorry if I'm wrong
Step-by-step explanation:
Answer:
The probability that it will choose food #2 on the second trial after the initial trial = 0.3125
Step-by-step explanation:
Given - A lab animal may eat any one of three foods each day. Laboratory records show that if the animal chooses one food on one trial, it will choose the same food on the next trial with a probability of 50%, and it will choose the other foods on the next trial with equal probabilities of 25%.
To find - If the animal chooses food #1 on an initial trial, what is the probability that it will choose food #2 on the second trial after the initial trial?
Proof -
By the given information, we get the stohastic matrix
![H = \left[\begin{array}{ccc}0.5&0.25&0.25\\0.25&0.5&0.25\\0.25&0.25&0.5\end{array}\right]](https://tex.z-dn.net/?f=H%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%260.25%260.25%5C%5C0.25%260.5%260.25%5C%5C0.25%260.25%260.5%5Cend%7Barray%7D%5Cright%5D)
As we know that,
The matrix is a Markov chain 
Let
The initial state vector be
![x_{0} = \left[\begin{array}{ccc}1\\0\\0\end{array}\right]](https://tex.z-dn.net/?f=x_%7B0%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C0%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
we choose this initial vector because given that If the animal chooses food #1 on an initial trial.
Now,
![x_{1} = Hx_{0} \\ = \left[\begin{array}{ccc}0.5&0.25&0.25\\0.25&0.5&0.25\\0.25&0.25&0.5\end{array}\right]\left[\begin{array}{ccc}1\\0\\0\end{array}\right] \\= \left[\begin{array}{ccc}0.5\\0.25\\0.25\end{array}\right]](https://tex.z-dn.net/?f=x_%7B1%7D%20%3D%20Hx_%7B0%7D%20%5C%5C%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%260.25%260.25%5C%5C0.25%260.5%260.25%5C%5C0.25%260.25%260.5%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C0%5C%5C0%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%5C%5C0.25%5C%5C0.25%5Cend%7Barray%7D%5Cright%5D)
∴ we get
![x_{1} = \left[\begin{array}{ccc}0.5\\0.25\\0.25\end{array}\right]](https://tex.z-dn.net/?f=x_%7B1%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%5C%5C0.25%5C%5C0.25%5Cend%7Barray%7D%5Cright%5D)
Now,
![x_{2} = Hx_{1} \\ = \left[\begin{array}{ccc}0.5&0.25&0.25\\0.25&0.5&0.25\\0.25&0.25&0.5\end{array}\right]\left[\begin{array}{ccc}0.5\\0.25\\0.25\end{array}\right] \\= \left[\begin{array}{ccc}0.25+0.0625+0.0625\\0.125+0.125+0.0625\\0.125+0.0625+0.125\end{array}\right]\\= \left[\begin{array}{ccc}0.375\\0.3125\\0.3125\end{array}\right]](https://tex.z-dn.net/?f=x_%7B2%7D%20%3D%20Hx_%7B1%7D%20%5C%5C%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%260.25%260.25%5C%5C0.25%260.5%260.25%5C%5C0.25%260.25%260.5%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%5C%5C0.25%5C%5C0.25%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.25%2B0.0625%2B0.0625%5C%5C0.125%2B0.125%2B0.0625%5C%5C0.125%2B0.0625%2B0.125%5Cend%7Barray%7D%5Cright%5D%5C%5C%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.375%5C%5C0.3125%5C%5C0.3125%5Cend%7Barray%7D%5Cright%5D)
∴ we get
![x_{2} = \left[\begin{array}{ccc}0.375\\0.3125\\0.3125\end{array}\right]](https://tex.z-dn.net/?f=x_%7B2%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.375%5C%5C0.3125%5C%5C0.3125%5Cend%7Barray%7D%5Cright%5D)
∴ we get
The probability that it will choose food #2 on the second trial after the initial trial = 0.3125
a.) you start with 19=h/3-8 so you add 8 to both sides then you simplify 19+8 to 27 so the equation then becomes 27=h/3 from there you multiply each side by 3 so its 27*3=h then you simplify 27*3 which leaves you with 81=h u then switch it around and your final answer h=81
b.) you start with 0.6x +0.8=1.4 first you subtract 0.8 from both sides so the equation is 0.6x=1.4-0.8 then you simplify 1.4-0.8/ so it then becomes 0.6x=0.6 u then divide both sides by 0.6 so the equation is now x=0.6/0.6 you then simplify 0.6/0.6 so you are left with x=1
Answer:


Step-by-step explanation:
Given



Required
The size of
of height 
First, we calculate the width using the following equivalent ratios

Express as fraction

Solve for x


Hence:
--- approximated
So, we have:


The size (diagonal) is then calculated using:




--- approximated
Standard form
24x10^3=24000