Answer:

Step-by-step explanation:
The constraints are
The red line represents the function

At 

At 

Two points are 
The blue line represents the function

at 

at 

Two points are 
The other two constraints are
,
. So, the point has to be in the first quadrant
From the graph it can be seen there are two points where the function will be maximum let us check them.




So, the maximum value of the function is
.
Answer:
There is no specific linear equation for this scenario because there is only one possible length for the pole.
Step-by-step explanation:
Answer:
Value of f (Parapedicular) = 7√6
Step-by-step explanation:
Given:
Given triangle is a right angle triangle
Value of base = 7√2
Angle made by base and hypotenuse = 60°
Find:
Value of f (Parapedicular)
Computation:
Using trigonometry application
Tanθ = Parapedicular / Base
Tan60 = Parapedicular / 7√2
√3 = Parapedicular / 7√2
Value of f (Parapedicular) = 7√2 x √3
Value of f (Parapedicular) = 7√6