Answer:
x+7>5 there it is pay more attention in class cause that's cake
Answer:
a) sample of size n from the population has an equal chance of being selected.
b) Every member of the population has an equal chance of being included in the sample.
Step-by-step explanation:
Simple random sampling:
- It is a type of probabilistic sampling.
- It is an unbiased representation of population.
- The probability of selection is equal for every observation.
- A sample is taken in such a way that each member has an equal probability of being selected.
- A simple random sample is a subset of a statistical population in which each member of the subset has an equal probability of being chosen.
- Thus,the correct interpretation is given by,
a) sample of size n from the population has an equal chance of being selected.
b) Every member of the population has an equal chance of being included in the sample.
- c) The simplest method of selection is used to create a representative sample.
The statement is false.
There is no pattern or technique used for selection. The selection is purely random.
- d) Each subset of the population has an equal chance of being included in the sample.
The statement is false.
Each object of the population has an equal chance of being included in the sample. and not each subset.
- e) Every sample of size n from the population has a proportionally weighted chance of being selected.
The given statement is false.
Use the point slope formula. then, substitute the values inside the formula.
x1 =3
y1= -2
m = 23
y -y1 = m ( x - x1)
y - (-2) = 23 (x - 3)
y + 2 = 23 ( x - 3)
Answer: -9.999e+23
I don't know what you're up to.
An asymptote is a vertical horizontal or oblique line to which the graph of a function progressively approaches without ever touching it.
To answer this question we observe the graph. All the values of x and y must be identified for which the graph of the function tends to infinity.
It is observed that these values are:
x = -1
x = 3
y = 0
The first two corresponds to the equations of a vertical line. The third corresponds to horizontal line, the axis of x. It can be seen that although the graph of the function is very close to these values, it never "touches" them