Answer:
Sometimes molecules cannot move through the cell membrane on their own. These molecules need special transport proteins to help them move across the membrane. Facilitated diffusion is the diffusion of substances with the help of transport proteins in the plasma membrane. These special proteins are called channel proteins or carrier proteins, and they are attached to the cell membrane. In fact, they go through the cell membrane, from the inside of the cell to the outside. Facilitated diffusion is used for molecules that cannot diffuse rapidly through cell membranes on their own, even when the molecules are moving from high to low concentration areas. An example is the sugar plants and animals use for energy, called glucose. Even though facilitated diffusion involves transport proteins, it is still passive transport because the solute is moving down the concentration gradient so it does not require the use of cellular energy.
Because the recessive trait might not show, but its there, lets say B is brown eyes and b is blue eyes, BB is brown, Bb is brown, and bb is blue, if B is present, brown will always show, but as long as the little b is there, there is a chance of the kids having blue eyes, sure most people would have brown eyes, but a lot of the people with brown eyes would be Bb
Explanation:
Solar UV radiation. Australia experiences some of the highest levels of UV radiation in the world because we are close to the equator and have many clear, blue-sky days. The Earth's orbit also brings countries in the southern hemisphere (Australia included) closer to the sun in the summertime than countries in the northern hemisphere during summer.
Answer:
See the answer below
Explanation:
The central dogma gives a description of how genetic information travels in biological cells from DNAs to proteins. DNAs are first transcribed into messenger RNAs in a process known as transcription and the resulting mRNAs are used in the synthesis of proteins in a process known as translation.
In eukaryotic cells, transcription process happens within the confines of the nucleus because the genetic material in the form of DNAs are always located in the nucleus. Thereafter, the mRNAs generated from transcription are transported to the cytoplasm of the cell where they become translated into proteins.
Hence;
- <em>T</em><em>ranscription</em><em> happens in the </em><em>nucleus</em><em> of the cell.</em>
- <em>Translation </em><em>happens in the </em><em>cytoplasm</em><em> of the cell.</em>