Step-by-step explanation:
Real numbers include:
Rational numbers include
Fractions, Integers
Integers include
Negative Integers, Whole numbers
Whole numbers include
Zero, Natural number
Irrational numbers
Question:
What is the area of the sector? Either enter an exact answer in terms of π or use 3.14 and enter your answer as a decimal rounded to the nearest hundredth.
Answer:
See Explanation
Step-by-step explanation:
The question is incomplete as the values of radius and central angle are not given.
However, I'll answer the question using the attached figure.
From the attached figure, the radius is 3 unit and the central angle is 120 degrees
The area of a sector is calculated as thus;

Where
represents the central angle and r represents the radius
By substituting
and r = 3
becomes



square units
Solving further to leave answer as a decimal; we have to substitute 3.14 for 
So,
becomes

square units
Hence, the area of the sector in the attached figure is
or 9.42 square units
Answer:
Recall that a relation is an <em>equivalence relation</em> if and only if is symmetric, reflexive and transitive. In order to simplify the notation we will use A↔B when A is in relation with B.
<em>Reflexive: </em>We need to prove that A↔A. Let us write J for the identity matrix and recall that J is invertible. Notice that
. Thus, A↔A.
<em>Symmetric</em>: We need to prove that A↔B implies B↔A. As A↔B there exists an invertible matrix P such that
. In this equality we can perform a right multiplication by
and obtain
. Then, in the obtained equality we perform a left multiplication by P and get
. If we write
and
we have
. Thus, B↔A.
<em>Transitive</em>: We need to prove that A↔B and B↔C implies A↔C. From the fact A↔B we have
and from B↔C we have
. Now, if we substitute the last equality into the first one we get
.
Recall that if P and Q are invertible, then QP is invertible and
. So, if we denote R=QP we obtained that
. Hence, A↔C.
Therefore, the relation is an <em>equivalence relation</em>.
Answer:
360 percent. 360 percent probability i think