Recall that
sin(<em>a</em> + <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) + cos(<em>a</em>) sin(<em>b</em>)
sin(<em>a</em> - <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) - cos(<em>a</em>) sin(<em>b</em>)
Adding these together gives
sin(<em>a</em> + <em>b</em>) + sin(<em>a</em> - <em>b</em>) = 2 sin(<em>a</em>) cos(<em>b</em>)
To get 14 cos(39<em>x</em>) sin(19<em>x</em>) on the right side, multiply both sides by 7 and replace <em>a</em> = 19<em>x</em> and <em>b</em> = 39<em>x</em> :
7 (sin(19<em>x</em> + 39<em>x</em>) + sin(19<em>x</em> - 39<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) + sin(-20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) - sin(20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
This is the concept of areas of solid materials; the surface area of the cylinder whose radius is 2.5 cm and lateral area is 20 pi cm^2 will be: Surface area of cylinder is given by:
SA=(area of cyclic sides)+(lateral area)
SA=2πr^2+πrl
Area of the cyclic sides will be:
Area=2πr^2
=2*π*2.5^2
=12.5π cm^2
The lateral area is given by:
Area=20π cm^2
Therefore the surface area of cylinder will be:
SA=(12.5π+20π) cm^2
SA=32.5π cm^2
The answer is 32.5π cm^2
Answer:
−a2+17b
Step-by-step explanation:
Answer:
A dozen = 12
Step-by-step explanation:
I think I’m right
Answer:

Step-by-step explanation:
Given



Required
Determine P(Gray and Blue)
Using probability formula;

Calculating P(Gray)



Calculating P(Gray)



Substitute these values on the given formula


