Answer:
<em>S</em><em>o</em><em> </em><em>1</em><em>)</em><em> </em><em> </em><em>x</em><em>²</em><em>-</em><em>2</em><em>x</em><em>-</em><em>8</em>
<em>=</em><em> </em><em> </em><em> </em><em> </em><em> </em> x(x-2-8/x)
<em>2</em><em>)</em><em> </em><em> </em><em> </em><em>y</em><em>²</em><em>-</em><em>1</em><em>3</em><em>y</em><em>+</em><em>4</em><em>2</em>
<em> </em><em>=</em><em> </em><em> </em><em> </em>y(y-13+42/y)
<em>3</em><em>)</em><em> </em><em>m</em><em>²</em><em>-</em><em>6</em><em>m</em><em>-</em><em>7</em>
<em> </em><em>=</em><em> </em><em>m</em><em>(</em><em>m</em><em>-</em><em>6</em><em>-</em><em>7</em><em>/</em><em>m</em><em>)</em>
<em>H</em><em>o</em><em>p</em><em>e</em><em> </em><em>i</em><em>t</em><em> </em><em>h</em><em>e</em><em>l</em><em>p</em><em>s</em>
(cube root of 5) * sqrt(5)
--------------------------------- = ?
(cube root of 5^5)
This becomes easier if we switch to fractional exponents:
5^(1/3) * 5^(1/2) 5^(1/3 + 1/2) 5^(5/6)
------------------------ = --------------------- = ------------- = 5^[5/6 - 5/3]
[ 5^5 ]^(1/3) 5^(5/3) 5^(5/3)
Note that 5/6 - 5/3 = 5/6 - 10/6 = -5/6.
1
Thus, 5^[5/6 - 5/3] = 5^(-5/6) = --------------
5^(5/6)
That's the correct answer. But if you want to remove the fractional exponent from the denominator, do this:
1 5^(1/6) 5^(1/6)
---------- * ------------- = -------------- (ANSWER)
5^(5/6) 5^(1/6) 5
Answer:
193.80
Step-by-step explanation:
30x6.46=193.80
Answer:
k = -
, k = 2
Step-by-step explanation:
Using the discriminant Δ = b² - 4ac
The condition for equal roots is b² - 4ac = 0
Given
kx² + 2x + k = - kx ( add kx to both sides )
kx² + 2x + kx + k = 0 , that is
kx² + (2 + k)x + k = 0 ← in standard form
with a = k, b = 2 + k and c = k , thus
(2 + k)² - 4k² = 0 ← expand and simplify left side
4 + 4k + k² - 4k² = 0
- 3k² + 4k + 4 = 0 ( multiply through by - 1 )
3k² - 4k - 4 = 0 ← in standard form
(3k + 2)(k - 2) = 0 ← in factored form
Equate each factor to zero and solve for k
3k + 2 = 0 ⇒ 3k = - 2 ⇒ k = - 
k - 2 = 0 ⇒ k = 2
Step-by-step explanation:
The coordinate plane is a two-dimension surface formed by two number lines. One number line is horizontal and is called the x-axis. The other number line is vertical number line and is called the y-axis. The two axes meet at a point called the origin. We can use the coordinate plane to graph points, lines