1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vitek1552 [10]
3 years ago
13

The cube root of 5 times the square root of 5 over the cube root of 5 to the 5th power

Mathematics
1 answer:
Fiesta28 [93]3 years ago
7 0
(cube root of 5)  * sqrt(5)
--------------------------------- = ?
(cube root of 5^5)

This becomes easier if we switch to fractional exponents:


  5^(1/3) * 5^(1/2)         5^(1/3 + 1/2)       5^(5/6)
------------------------ = --------------------- = ------------- = 5^[5/6 - 5/3]
[ 5^5 ]^(1/3)                  5^(5/3)                 5^(5/3) 

Note that 5/6 - 5/3 = 5/6 - 10/6 = -5/6.

                                                            1
Thus,  5^[5/6 - 5/3] = 5^(-5/6)  =  --------------
                                                        5^(5/6)

That's the correct answer.  But if you want to remove the fractional exponent from the denominator, do this:

    1            5^(1/6)         5^(1/6)
---------- * ------------- = --------------    (ANSWER)
5^(5/6)       5^(1/6)              5
You might be interested in
How do you decompose 7
shtirl [24]
I thinkkkkk that you have to see what 2 #'s equal 7??
8 0
3 years ago
Read 2 more answers
FIND THE VALUEOF THE VARIBLE AND FILL THE BLANK.
ludmilkaskok [199]

Answer:

f = 2

g = 8

h = -9

k = 40

m = 1

Step-by-step explanation:

Equation 1:

23f - 17 = 29

Add 17 to both sides. This undoes the -17.

23f = 29 + 17

Add 17 to 29 to get 46.

23f = 46

Divide both sides by 23. This undoes the multiplication by 23.

f = 46/23

Divide 46 by 23 to get 2.

f = 2

Equation 2:

2(3g + 4) = 56

Divide both sides by 2. This undoes the multiplication by 2.

3g + 4 = 56/2

Divide 56 by 2 to get 28.

3g + 4 = 28

Subtract 4 from both sides. This undoes the +4.

3g = 28 - 4

Subtract 4 from 28 to get 24.

3g = 24

Divide both sides by 3. This undoes the multiplication by 3.

g = 24/3

Divide 24 by 3 to get 8.

g = 8

Equation 3:

h + 9 = 0

Subtract 9 from both sides. This undoes the +9.

h = 0 - 9

Any number subtracted from 0 gives its negation.

h = -9

Equation 4

3(k - 8) = 96

Divide both sides by 3. This undoes the multiplication by 3.

k - 8 = 96/3

Divide 96 by 3 to get 32.

k - 8 = 32

Add 8 to both sides. This undoes the -8.

k = 32 + 8

Add 8 to 32 to get 40.

k = 40

Equation 5:

5m - 5 = 0

Add 5 to both sides. This undoes the -5

5m = 0 + 5

Anything plus 0 gives itself.

5m = 5

Divide both sides by 5. This undoes the multiplication by 5

m = 5/5

Anything divided by itself gives you 1.

m = 1

4 0
3 years ago
Labeling Parts of a Circle
mel-nik [20]

Answer:

Click on the screenshot, I labeled the parts

Hope this helps :))

7 0
2 years ago
Which system of equations will yield the same solution as x-y=3 2x-3y=-1​
laiz [17]

Answer: Is there some answer choices? Because I can't help if I  don't have any choices.

Step-by-step explanation:

5 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%281-x%5E%7B2%7D%20%29%5E%7B3%2F2%7D%20%7D%20%5C%2C%20dx" id="TexFo
Ludmilka [50]

Answer:\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Trigonometric Identities

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                    \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:                                                                                               \displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution (trigonometric substitution).</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle x = sin(u)
  2. [<em>u</em>] Differentiate [Trigonometric Differentiation]:                                         \displaystyle dx = cos(u) \ du
  3. Rewrite <em>u</em>:                                                                                                       \displaystyle u = arcsin(x)

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Trigonometric Substitution:                                                           \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du
  2. [Integrand] Rewrite:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du
  3. [Integrand] Simplify:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b
  5. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:                                                                          \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:                                                                     \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  9. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b
  10. Back-Substitute:                                                                                               \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  12. Rewrite:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Read 2 more answers
Other questions:
  • Write a recursive formula to represent the total height of the nth stair above the ground if the height of each stair is 18 cm.
    12·1 answer
  • When does a negative correlation exist? the variables change in opposite directions both variables change in the same direction.
    11·1 answer
  • A parking garage charges $4.50 for each hour you park. You have $18 in your pocket.
    12·2 answers
  • Yvonne put $4,000 in a savings account. At the end of 3 years, the account had earned $960 in simple interest.
    15·1 answer
  • What is the value of h in the diagram below? If necessary, round your answer
    7·1 answer
  • What is the midpoint
    12·2 answers
  • Plz, Help!!!!!!!!! Thank You
    13·1 answer
  • Jackie made bracelets for 8 days. When he was done he had 96 bracelets. Choose an equation that expresses how many bracelets Jac
    7·1 answer
  • Ahhhhhhhhhhhhhhhhhhhh​
    12·1 answer
  • What is the slope !<br> (The bottom one says : (-5, -3)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!