Local(L) = 1 x (15.99)
Online(O) = (1 x 13.99) + 6
So use that equation until you find the same number.
L1=15.99
O1=19.99
L2=31.98
O2=33.98
L3=47.97
O3=47.97
And your answer will be three from local and three from online.
If you are given y = (-3/7)x - 2 and you want it in the form Ax+By = C, then...
y = (-3/7)x-2
7*y = 7*( (-3/7)x-2) ... multiply both sides by 7
7y = -3x-14 ... distribute and multiply
7y+3x = -3x-14+3x ... add 3x to both sides
3x+7y = -14
The standard form equation is 3x+7y = -14
Answer: $11.80 for another 4 panes of glass.
Step-by-step explanation: We know that 9 panes of glass cost $26.55, but we should first find how many dollars would it cost per pane of glass, or 1.
So, we can divide 26.55 by 9 to find the price per 1 pan of glass.
26.55/9 = 2.95, or $2.95 per pane of glass.
Now, we want to know how much it will cost for 4 panes of glass. Simply multiply 2.95 by 4.
2.95 x 4 = 11.8, or $11.80 for another 4 panes of glass.
Answer:
$1.07 for the late fees.
Step-by-step explanation:
You can find the fee for this price by finding 3% of the $35.62 (total cost of the books). You can find this number by multiplying (35.62*.03).
35.62*.03
1.0686
Round up because you cannot have part of a cent.
$1.07 for the late fees.
Answer:
1+i
Step-by-step explanation:
To find the 8th roots of unity, you have to find the trigonometric form of unity.
1. Since
then

and

This gives you 
Thus,

2. The 8th roots can be calculated using following formula:
![\sqrt[8]{z}=\{\sqrt[8]{|z|} (\cos\dfrac{\varphi+2\pi k}{8}+i\sin \dfrac{\varphi+2\pi k}{8}), k=0,\ 1,\dots,7\}.](https://tex.z-dn.net/?f=%5Csqrt%5B8%5D%7Bz%7D%3D%5C%7B%5Csqrt%5B8%5D%7B%7Cz%7C%7D%20%28%5Ccos%5Cdfrac%7B%5Cvarphi%2B2%5Cpi%20k%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B%5Cvarphi%2B2%5Cpi%20k%7D%7B8%7D%29%2C%20k%3D0%2C%5C%201%2C%5Cdots%2C7%5C%7D.)
Now
at k=0, ![z_0=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 0}{8}+i\sin \dfrac{0+2\pi \cdot 0}{8})=1\cdot (1+0\cdot i)=1;](https://tex.z-dn.net/?f=z_0%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%200%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%200%7D%7B8%7D%29%3D1%5Ccdot%20%281%2B0%5Ccdot%20i%29%3D1%3B)
at k=1, ![z_1=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 1}{8}+i\sin \dfrac{0+2\pi \cdot 1}{8})=1\cdot (\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2})=\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_1%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%201%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%201%7D%7B8%7D%29%3D1%5Ccdot%20%28%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
at k=2, ![z_2=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 2}{8}+i\sin \dfrac{0+2\pi \cdot 2}{8})=1\cdot (0+1\cdot i)=i;](https://tex.z-dn.net/?f=z_2%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%202%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%202%7D%7B8%7D%29%3D1%5Ccdot%20%280%2B1%5Ccdot%20i%29%3Di%3B)
at k=3, ![z_3=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 3}{8}+i\sin \dfrac{0+2\pi \cdot 3}{8})=1\cdot (-\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2})=-\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_3%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%203%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%203%7D%7B8%7D%29%3D1%5Ccdot%20%28-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
at k=4, ![z_4=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 4}{8}+i\sin \dfrac{0+2\pi \cdot 4}{8})=1\cdot (-1+0\cdot i)=-1;](https://tex.z-dn.net/?f=z_4%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%204%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%204%7D%7B8%7D%29%3D1%5Ccdot%20%28-1%2B0%5Ccdot%20i%29%3D-1%3B)
at k=5, ![z_5=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 5}{8}+i\sin \dfrac{0+2\pi \cdot 5}{8})=1\cdot (-\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2})=-\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_5%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%205%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%205%7D%7B8%7D%29%3D1%5Ccdot%20%28-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
at k=6, ![z_6=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 6}{8}+i\sin \dfrac{0+2\pi \cdot 6}{8})=1\cdot (0-1\cdot i)=-i;](https://tex.z-dn.net/?f=z_6%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%206%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%206%7D%7B8%7D%29%3D1%5Ccdot%20%280-1%5Ccdot%20i%29%3D-i%3B)
at k=7, ![z_7=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 7}{8}+i\sin \dfrac{0+2\pi \cdot 7}{8})=1\cdot (\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2})=\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_7%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%207%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%207%7D%7B8%7D%29%3D1%5Ccdot%20%28%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
The 8th roots are

Option C is icncorrect.