the right answer is 7 and 4 because the angles are between the two lines that are not the transversal and are on diagonal opposite sides of the transversal.
Answer:
{x,y} = {89/37,-71/37}
Step-by-step explanation:
8x = 3y + 25
[2] x = 3y/8 + 25/8
Plug this in for variable x in equation [1]
[1] 6•(3y/8+25/8) + 7y = 1
[1] 37y/4 = -71/4
[1] 37y = -71
Solve equation [1] for the variable y
[1] 37y = - 71
[1] y = - 71/37
By now we know this much :
x = 3y/8+25/8
y = -71/37
Use the y value to solve for x
x = (3/8)(-71/37)+25/8 = 89/37
Answer:
y=1/4x
Step-by-step explanation: in image below
Answer:
thanksssss! <3 :))))))))))
Step-by-step explanation:
To prove that triangles TRS and SUT are congruent we can follow these statements:
1.- SR is perpendicular to RT: Given
2.-TU is perpendicular to US: Given
3.-Angle STR is congruent with angle TSU: Given.
4.-Reflexive property over ST: ST is congruent with itself (ST = ST)
From here, we can see that both triangles TRS and SUT have one angle of 90 degrees, another angle that they both have, and also they share one side (ST) ,then:
5.- By the ASA postulate (angle side angle), triangles TRS and SUT are congruent