Answer:
umm i am pretty sure it is 20 to 22
Step-by-step explanation:
The image on the left represents a function. The image on the right does not as a function cannot have multiple variables for a single X quantity.
3,000,000 + 20,000 + 9,000 + 200 + 50 + 1
Answer:
B. A(r(t)) = 25πt²
Step-by-step explanation:
Find the completed question below
The radius of a circular pond is increasing at a constant rate, which can be modeled by the function r(t) = 5t where t is time in months. The area of the pond is modeled by the function A(r) = πr². The area of the pond with respect to time can be modeled by the composition . Which function represents the area with respect to time? A. B. C. D.
Given
A(t) = πr²
r(t) = 5t
We are to evaluate the composite expression A(r(t))
A(r(t)) = A(5t)
To get A(5t), we will replace r in A(t) with 5t and simplify as shown
A(5t) = π(5t)²
A(5t) = π(25t²)
A(5t) = 25πt²
A(r(t)) = 25πt²
Hence the composite expression A(r(t)) is 25πt²
Option B is correct.
A=P (1+r/n)^nt
A= Total amount invested, P=principal amount, r=Interest rate, n=number of time in a year when the interest is earned (for annual, n=1; for semi-annual, n=2, ...), t = time in years
In the current scenario, case 1, n=2; case 2, n=1 and A1=A2, t1=t2
Therefore,
800(1+0.0698/2)^2t = 1000(1+0.0543/1)t
Dividing by 800 on both sides;
(1+0.0349)^2t = 1.25(1+0.02715)^t
(1.0349)^2t = 1.25(1.02715)^t
Taking ln on both sides of the above equation;
2t*ln (1.0349)= ln 1.25 + t*ln (1.02715)
2t*0.0343 = 0.2231+ t*0.0268
0.0686 t = 0.2231+0.0268 t
(0.0686-0.0268)t = 0.2231
0.0418t=0.2231
t=5.337 years
Therefore, after 5.337 years or 5 years and approximately 4 months, their value of investments will be equal.
This value will be,
A=800(1+0.0698/2)^2*5.337 = $1,153.76