Answer:
There were 6 benches in park 1 and 18 benches in park 2.
Step-by-step explanation:
Let x be the no of benches in Park 1 and y in park 2.
Given that there are 12 more benches in park 2 than 1
Writing this in equation form, we have y = x+12 ... i
Next is if 2 benches were transferred from park 2 to park 1, then we have
x+2 in park 1 and y-2 in park 2.
Given that y-2 = twice that of x+2
Or y-2 = 2x+4 ... ii
Rewrite by adding 2 to both sides of equation ii.
y = 2x+6 ... iii
i-iii gives 0 = -x+6
Or x =6
Substitute in i, to have y = 6+12 = 18
Verify:
Original benches 6 and 18.
18 = 6+12 hence I condition is satisfied
18-2 = 2(6+2)
II is also satisfied.
One of the major advantage of the two-condition experiment has to do with interpreting the results of the study. Correct scientific methodology does not often allow an investigator to use previously acquired population data when conducting an experiment. For example, in the illustrative problem involving early speaking in children, we used a population mean value of 13.0 months. How do we really know the mean is 13.0 months? Suppose the figures were collected 3 to 5 years before performing the experiment. How do we know that infants haven’t changed over those years? And what about the conditions under which the population data were collected? Were they the same as in the experiment? Isn’t it possible that the people collecting the population data were not as motivated as the experimenter and, hence, were not as careful in collecting the data? Just how were the data collected? By being on hand at the moment that the child spoke the first word? Quite unlikely. The data probably were collected by asking parents when their children first spoke. How accurate, then, is the population mean?
Answer:
B
Step-by-step explanation:
.
Plug in each pair into each system of inequalities. And see which one fits
࿐αɴѕωєя࿐
12.6 ft³
Step-by-step explanation:
h = 1 ft
r = 2 ft
π = 3.14
V of cylinder = πr²h
= 3.14 × 2² × 1
= 12.56
= 12.6 ft³
Hope it helps ⚜