<h3>
Answer: 161 degrees</h3>
=========================================================
Explanation:
Line AE is a tangent while line AU is a secant. The angle formed by the secant and tangent lines connects with the arcs through this formula
secant tangent angle = (larger arc - smaller arc)/2
More specifically, we can say:
angle EAI = (arc EU - arc IE)/2
42 = ( (7m+5) - (3m-1) )/2
42*2 = (7m+5) - (3m-1)
84 = 7m+5 - 3m+1
84 = 4m+6
4m+6 = 84
4m = 84-6
4m = 78
m = 78/4
m = 39/2
m = 19.5
Use this value of m to compute each arc
- arc IE = 3m-1 = 3*19.5-1 = 57.5 degrees
- arc EU = 7m+5 = 7*19.5+5 = 141.5 degrees
Let's say arc IU is some unknown number x. It must add to the other two arc measures to form 360 degrees, which is a full circle.
(arc IU) + (arc IE) + (arc EU) = 360
x + 57.5 + 141.5 = 360
x + 199 = 360
x = 360-199
x = 161
The measure of minor arc IU is 161 degrees
That would simplify to 32x^5+400x^4+200x^3+5000x^2+6250x+3125
You would do that because you have to write it repeatedly as (2x+5)(2x+5) and so on.
The answer you are looking for is B. 70.69
Answer:
(X) 0 1 2 3 4
P(X) 0.17 0.23 0.27 0.24 0.09
F(x) 0.17 0.04 0.65 0.91 1
Step-by-step explanation:
Given that;
(X) 0 1 2 3 4
P(X) 0.17 0.23 0.27 0.24 0.09
cumulative distribution function can be calculated by; be cumulatively up the value of p(x) with the values before it;
so
x F(x)
0 P(X = 0) = 0.17
1 P(X = 0) + P(X = 1) = 0.17 + 0.23 = 0.4
2 P(X = 0) + P(X = 1) + P(X = 2) = 0.17 + 0.23 + 0.27 = 0.65
3 P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.17 + 0.23 + 0.27 + 0.24 = 0.91
4 P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 0.17 + 0.23 + 0.27 + 0.24 + 0.09 = 1
Therefore, cumulative distribution function f(x) is;
(X) 0 1 2 3 4
P(X) 0.17 0.23 0.27 0.24 0.09
F(x) 0.17 0.04 0.65 0.91 1
Answer:
3. A; 4. C; 5. D; 6. D
Step-by-step explanation:
3. By Pythagorean theorem, x^2=100-64=36, x=6
4. By Pythagorean theorem, x^2=81-36=25, x=5
5. Since the triangle is an isosceles, the other side is 4, so the hypotenuse is 4
. (the ratio is 1:1:
by Pythagorean theorem)
6. Like Question #5, the ratio is 1:1:
since it is an isosceles triangle, the leg is 8.