A fixed expense<span> is an </span>expense<span> that will be the same total amount regardless of changes in the amount of sales, production, or some other activity. A good example of this is rent or a mortgage.</span>
Answer:
t-shirts: 2790
profit: $12209
Step-by-step explanation:
Given the function:
p(x) = -x³ + 4x² + x
we want to maximize it.
The following criteria must be satisfied at the maximum:
dp/dx = 0
d²p/dx² < 0
dp/dx = -3x² + 8x + 1 = 0
Using quadratic formula:
d²p/dx² = -6x + 8
d²p/dx² at x = -0.12: -6(-0.12) + 8 = 8.72 > 0
d²p/dx² at x = 2.79: -6(2.79) + 8 = -8.74 < 0
Then, he should prints 2.79 thousands, that is, 2790 t-shirts to make maximum profits.
Replacing into profit equation:
p(x) = -(2.79)³ + 4(2.79)² + 2.79 = 12.209
that is, $12209
The upper comment is correct
The cinematic equation is:
h (t) = (1/2) * a * t ^ 2 + vo * t + h0
Where,
a: acceleration
vo: initial speed
h0: initial height
Substituting values:
h (t) = (1/2) * (- 32) * t ^ 2 + (0) * t + 9
h (t) = - 16t ^ 2 + 9
For t = 0.2 we have:
h (0.2) = - 16 * (0.2) ^ 2 + 9
h (0.2) = 8.36 feet
To touch the ground we have:
-16t ^ 2 + 9 = 0
16t ^ 2 = 9
t = root (9/16)
t = 0.75 s
Answer:
The height of the cherry after 0.2 seconds is:
h (0.2) = 8.36 feet
the cherry hits the ground at:
t = 0.75 s