Answer:
20 N/m
Explanation:
From the question,
The ball-point pen obays hook's law.
From hook's law,
F = ke............................ Equation 1
Where F = Force, k = spring constant, e = compression.
Make k the subject of the equation
k = F/e........................ Equation 2
Given: F = 0.1 N, e = 0.005 m.
Substitute these values into equation 2
k = 0.1/0.005
k = 20 N/m.
Hence the spring constant of the tiny spring is 20 N/m
Answer:
a. Photogates placed at the beginning, end, and at various locations along the track that the car travels on.
b. A meterstick to measure the distance of the track that the car travels on.
Explanation:
Physics can be defined as the field or branch of science that typically deals with nature and properties of matter, motion and energy with respect to space, force and time.
In this scenario, a student is provided with a battery-powered toy car that the manufacturer claims will always operate at a constant speed. The student must design an experiment in order to test the validity of the claim.
Therefore, to test the validity of the claim, the student should use the following measuring tools;
a. Photogates placed at the beginning, end, and at various locations along the track that the car travels on. This device is typically used to measure time with respect to the rate of change of the interruption or block of an infra-red beam.
b. A meterstick to measure the distance of the track that the car travels on.
Hence, with these two devices the student can effectively measure or determine the validity of the claim.
Answer:
The compression is
.
Explanation:
A Hooke's law spring compressed has a potential energy

where k is the spring constant and
the distance to the equilibrium position.
A mass m moving at speed v has a kinetic energy
.
So, in the first part of the problem, the spring is compressed a distance d, and then launch the mass at velocity
. Knowing that the energy is constant.

If we want to double the kinetic energy, then, the knew kinetic energy for a obtained by compressing the spring a distance D, implies:

But, in the left side we can use the previous equation to obtain:





And this is the compression we are looking for