Answer:
Can you take a picture of the question so i could help!
Step-by-step explanation:
Answer:
1.66
Step-by-step explanation:
Calculation to find the standard deviation for the random variable X of the number of students who work full time in samples of size
Using this formula
Standard deviation(X)=√np(1−p)
Where,
n represent the number of students=16
p represent the percentage of all students who work full time=22
Let plug in the formula
Standard deviation(X)=√16(0.22)(1−0.22)
Standard deviation(X)=√(3.52)(0.78)
Standard deviation(X)=√2.7456
Standard deviation(X)=1.656
Standard deviation(X)=1.66 (Approximately)
Therefore the standard deviation for the number of students who work full time in samples of size 16 will be 1.66
Answer:
(2, - 3 )
Step-by-step explanation:
Given the 2 equations
2x - 3y = 13 → (1)
x + 2y = - 4 → (2)
Rearrange (2) expressing x in terms of y by subtracting 2y from both sides
x = - 4 - 2y → (3)
Substitute x = - 4 - 2y into (1)
2(- 4 - 2y) - 3y = 13 ← distribute and simplify left side
- 8 - 4y - 3y = 13
- 8 - 7y = 13 ( add 8 to both sides )
- 7y = 21 ( divide both sides by - 7 )
y = - 3
Substitute y = - 3 into (3) for corresponding value of x
x = - 4 - 2(- 3) = - 4 + 6 = 2
Solution is (2, - 3 )
Answer:
its 3:5
Step-by-step explanation: if you don't see the answer talk with your teacher because I did it and I got 3:5