Answer:
7
Explanation:
From the question, we're told that triangles AMY and MEG are similar. If triangle AMY has sides AM = 5, MY = 7, and AY = 3 then we can find the side lengths of triangle MEG since we're told from the question that it is a dilation of AMY by a scale factor of 1/3.
So all we need to is multiply the corresponding sides of AMY by 1/3, so we'll have;

We can then go ahead and find the perimeter of MEG. Note that to find the perimeter of a triangle, we add all the length of its sides;

The perimeter of MEG is 7.
Answer:
168cm^3
Step-by-step explanation:
Q to P is going to be 3cm. it is identical to the length T to U.
R to T , W to Q, S to U is going to be identical to P to V. P to V has been identified as 12 cm.
in the middle of the shape, there are 4 identical triangles. the height time length will give us the area of that one shape:
e.g for shape P to V to W to Q and back to P is one rectangle. the length is 12 cm and the width is 3 cm.
12 x 3= 36
36cm^3 is one rectangles surface area, we have 4 identical triangles that means we need to times 36 by 4.
so 36x4=144.
now on the left and right side, we have two squares. on the right, we have T to U to V to W back to T this has the height of 3 width of 4 then we do 3 X 4 which is 12, we times it by 2 because we have two identical squares.
12 X 2=24
finally we add 24 and 144 = 168cm^3.
hope this helps :)