The equation for the volume of a cube is V=s^3, where V is volume and s is side length. Plug in and solve:
V=4.5^3
V=4.5*4.5*4.5
V=91.125ft^3
Hope this helps!!
Answer:
Step-by-step explanation:
<em>Step 1: Determine quantity per liquid</em>
liquid 1=7/8 cup
liquid 2=9/10 cup
<em>Step 2: Derive expression to calculate total amount of mixture</em>
The expression below can be derived;
T=a+b
where;
T=total amount of mixture
a=total amount of liquid 1
b=total amount of liquid 2
In our case;
a=7/8 cup
b=9/10 cup
replacing;
T=(7/8)+(9/10)=1 31/40 cups
The total amount of mixture=1 31/40 cups
- Diameter of cylinder is <u>1</u><u>4</u><u> </u><u>units.</u>
<h3><u>Explamation </u><u>:</u></h3>
<em><u>Given </u></em><em><u>:</u></em><em><u>-</u></em>
- Volume of cylinder = 245π cubic units
- Height of cylinder = 5 units
<em><u>To </u></em><em><u>Find </u></em><em><u>:</u></em><em><u>-</u></em>
<em><u>Solution </u></em><em><u>:</u></em><em><u>-</u></em>
<em>Firstly </em><em>lets </em><em>calculate </em><em>radius </em><em>of </em><em>cylinder </em><em>by </em><em>using </em><em>formula </em><em>of </em><em>volume </em><em>of </em><em>cylinder,</em><em> </em><em>as </em><em>we </em><em>know </em><em>that;</em>
- Volume of cylinder = πr²h
<em>Putting </em><em>all </em><em>values </em><em>we </em><em>get;</em>
➸ 245π = π × r² × 5
<em>By </em><em>cutting </em><em>'π' </em><em>with </em><em>'π' </em><em>we </em><em>get;</em>
➸ 245 = r² × 5
➸ 245/5 = r²
➸ 49 = r²
➸ √(49) = r²
➸ √(<u>7</u><u> </u><u>×</u><u> </u><u>7</u><u>)</u> = r²
➸ 7 = r
➸ r = 7 units
- <u>Hence,</u><u> </u><u>radius </u><u>of </u><u>cylinder </u><u>is </u><u>7</u><u> </u><u>units.</u>
<em>Now </em><em>lets </em><em>calculate </em><em>its </em><em>diameter,</em><em> </em><em>as </em><em>we </em><em>know </em><em>that;</em>
<em>Putting </em><em>all </em><em>values </em><em>we </em><em>get;</em>
➸ Diameter = 7 × 2
➸ Diameter = 14 units
- <u>Hence,</u><u> </u><u>diameter </u><u>of </u><u>cylinder </u><u>is </u><u>1</u><u>4</u><u> </u><u>units.</u>
Answer:
Therefore the Correct option is First one
SAS, ∠A ≅ ∠C, AB ≅ CB , ∠ABD ≅ ∠CBD
.
Step-by-step explanation:
Given:
∠BDA ≅ ∠BDC
AD ≅ CD
TO Prove
ΔADB ≅ ΔCDB
Proof:
In ΔADB and ΔCDB
AD ≅ CD ....……….{Given}
∠BDA ≅ ∠BDC …………..{Given}
BD ≅ BD ....……….{Reflexive Property}
ΔADB ≅ ΔCDB ….{By Side-Angle-Side Congruence Postulate}
∴ ∠A ≅ ∠C ......{Corresponding Parts of Congruent Triangle are Congruent}
AB ≅ CB ......{Corresponding Parts of Congruent Triangle are Congruent}
∠ABD ≅ ∠CBD {Corresponding Parts of Congruent Triangle are Congruent}