D (-4; -2)
C (1; 2)
M (x; y)
DM+MC=CD
CM:MD=1:3
M: x= x(C)-(x(C) - x(D))/4=1-(1-(-4))/4=1 - (6/4)=1 - 1,5= - 0,5
M: y=y(C)-(y(C) - y(D))/4=2-(2-(-2))/4=2 - (4/4)=2 - 1=1
M(x; y)=M( -0,5; 1)
Answer:
∠y = 62.5°
∠x = 27.5°
Step-by-step explanation:
z is right angle. ∠z = 90°
∠x = ∠y - 35
∠x + ∠y + ∠z = 180 {Angle sum property of triangle}
y - 35 + y + 90 = 180
y + y - 35 + 90 = 180 {Combine like terms}
2y + 55 = 180
2y = 180 -55 {Subtract 55 from both sides}
2y = 125 {Divide both sides by 2}
y = 125 /2
∠y = 62.5°
∠x = 62.5 - 35 = 27.5°
A+B+C+D+E=540°
4X+5+7X+6X+10+5X-5+4X+10=540
26X = 520
X = 520 : 26 = 20°
E = 4X + 10 = 80 + 10 = 90 °
Answer:
2x^2 = 6x - 5.
-x^2 - 10x = 34.
These have only complex roots/
Step-by-step explanation:
3x^2 - 5x = -8
3x^2 - 5x + 8 = 0
There are complex roots if the discriminant 9b^2 - 4ac) is negative.
Here the discriminant D = (-5)^2 - 4*-5*8 = 25 + 160
This is positive so the roots are real.
2x^2 = 6x - 5
2x^2 - 6x + 5 = 0
D = (-6)^2 - 4*2*5 = 36 - 40 = -4
So this has no real roots only complex ones.
12x = 9x^2 + 4
9x^2 - 12x + 4 = 0
D = (-12)^2 - 4*9 * 4 = 144 - 144 = 0.
- Real roots.
-x^2 - 10x = 34
x^2 + 10x + 34 = 0
D = (10)^2 - 4*1*34 = 100 - 136 = -36.
No real roots = only complex roots.