Step-by-step explanation:
All steps are in pic above.
<u>N</u><u>o</u><u>t</u><u>e</u><u>:</u><u>i</u><u>f</u><u> </u><u>y</u><u>o</u><u>u</u><u> </u><u>h</u><u>a</u><u>v</u><u>e</u><u> </u><u>a</u><u>n</u><u>y</u><u> </u><u>questions</u><u> </u><u>a</u><u>b</u><u>o</u><u>u</u><u>t</u><u> </u><u>i</u><u>t</u><u> </u><u>l</u><u>e</u><u>t</u><u> </u><u>m</u><u>e</u><u> </u><u>k</u><u>n</u><u>o</u><u>w</u><u>.</u>
A² = c² - b²
a² = 21² - 13 ²
a² = 441 - 169
a² = 272
a = √272 = 16.49242 ≈ 16.49
Answer : D ) 16.49
Answer:
The amount after 8 years is $ 16,031.579
Step-by-step explanation:
Given as :
The Principal invested = $ 16000
The rate of interest compounded daily = 9 %
The time period = 8 years
Let The amount after 8 years = $ A
<u>From Compounded method </u>
Amount = Principal invested × ![(1+\dfrac{\textrm Rate}{365\times 100})^{365\times \textrm Time}](https://tex.z-dn.net/?f=%281%2B%5Cdfrac%7B%5Ctextrm%20Rate%7D%7B365%5Ctimes%20100%7D%29%5E%7B365%5Ctimes%20%5Ctextrm%20Time%7D)
Or, Amount = 16000 × ![(1+\dfrac{\textrm 9}{365\times 100})^{365\times \textrm 8}](https://tex.z-dn.net/?f=%281%2B%5Cdfrac%7B%5Ctextrm%209%7D%7B365%5Ctimes%20100%7D%29%5E%7B365%5Ctimes%20%5Ctextrm%208%7D)
Or, Amount = 16000 × ![(1.0002465)^{8}](https://tex.z-dn.net/?f=%281.0002465%29%5E%7B8%7D)
∴ Amount = $ 16,031.579
Hence The amount after 8 years is $ 16,031.579 Answer
Answer:
![P(t) = 608(1.5)^{t}](https://tex.z-dn.net/?f=P%28t%29%20%3D%20608%281.5%29%5E%7Bt%7D)
Step-by-step explanation:
The number of parrots in t years after 2010 can be modeled by the following function:
![P(t) = P(0)(1+r)^{t}](https://tex.z-dn.net/?f=P%28t%29%20%3D%20P%280%29%281%2Br%29%5E%7Bt%7D)
In which P(0) is the number of parrots in 2010 and r is the growth rate, as a decimal.
608 parrots in the forest in 2010.
This means that ![P(0) = 608](https://tex.z-dn.net/?f=P%280%29%20%3D%20608)
Then
![P(t) = 608(1+r)^{t}](https://tex.z-dn.net/?f=P%28t%29%20%3D%20608%281%2Br%29%5E%7Bt%7D)
When the scientists went back 5 years later, they found 4617 parrots.
This means that ![P(5) = 4617](https://tex.z-dn.net/?f=P%285%29%20%3D%204617)
We use this to find 1 + r. So
![P(t) = 608(1+r)^{t}](https://tex.z-dn.net/?f=P%28t%29%20%3D%20608%281%2Br%29%5E%7Bt%7D)
![4617 = 608(1+r)^{5}](https://tex.z-dn.net/?f=4617%20%3D%20608%281%2Br%29%5E%7B5%7D)
![(1+r)^{5} = \frac{4617}{608}](https://tex.z-dn.net/?f=%281%2Br%29%5E%7B5%7D%20%3D%20%5Cfrac%7B4617%7D%7B608%7D)
![1 + r = \sqrt[5]{\frac{4617}{608}}](https://tex.z-dn.net/?f=1%20%2B%20r%20%3D%20%5Csqrt%5B5%5D%7B%5Cfrac%7B4617%7D%7B608%7D%7D)
![1 + r = 1.5](https://tex.z-dn.net/?f=1%20%2B%20r%20%3D%201.5)
So
![P(t) = 608(1.5)^{t}](https://tex.z-dn.net/?f=P%28t%29%20%3D%20608%281.5%29%5E%7Bt%7D)
Step-by-step explanation:
u should:
7t = t + 48 » 7t - t = 48 » 6t = 48 » t = 8
and another one is:
2u + t + 13 = 10t + u - 44» 2u + 8 + 13 = 80 + u - 44»
» 2u + 21 = u + 36 » 2u - u = 36 - 21 » u = 15