Answer:
Step-by-step explanation:
Can the sides of a triangle have lengths 5, 8, and 11?
Answer:
Option 3. 71 ft. is the distance between B and top of the hill.
Step-by-step explanation:
Let the height of the hill is h ft and the distance of A from the hill be x ft and distance from B to hill is y.
It is given distance between A and B is 45 ft. ∠BAO = 65° and ∠ABO = 80°.
We have to find the distance of B from the top of the hill.
Now from ΔACO 

From ΔBCO 
h = 5.67x
Now h = 5.67x = 2.14(45-x)
5.67x = 96.3 - 2.14x
2.14x + 5.67x = 96.3
7.81x = 96.3
x = 96.3/7.81 = 12.33 ft
Therefore 


Therefore 71 ft is the distance between B and the top of the hill.
Answer:
sorry I can't know.
you can ask from your teacher
Remark
First of all you have to declare the meaning of g(f(x)) After you have done that, you have to make the correct substitution.
Givens
f(x) = 4x^2 + x + 1
g(x) = x^2 - 2
Discussion
What the given condition g(f(x)) means is that you begin with g(x). Write down g(x) = x^2 - 2
Wherever you see an x on either the left or right side of the equation, you put fix)
Then wherever you see f(x) on the right you put in what f(x) is equal to.
Solution
g(x) = x^2 - 2
g(f(x)) = (f(x))^2 - 2
g(f(x)) = [4x^2 + x + 1]^2 - 2
f(x)^2 =
4x^2 + x + 1
<u>4x^2 + x + 1</u>
16x^4 + 4x^3 + 4x^2
4x^3 + x^2 + x
<u> 4x^2 + x + 1</u>
16x^4 + 8x^3 + 9x^2 + 2x + 1
Answer
g(f(x)) = 16x^4 + 8x^3 + 9x^2 + 2x + 1 - 2
g(f(x)) = 16x^4 + 8x^3 + 9x^2 + 2x - 1
first number and second number and third number = Total
78 possibilities x 78 possibilities x 78 possibilities = 234
Since "order" matters, this is a permutation.
So, this can be calculated using: ₇₈P₃
"Permutation lock" would be a more appropriate name.